Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T10:35:33.786Z Has data issue: false hasContentIssue false

The community structure of hyperiid amphipods associated with two seamount regions in the South-east Pacific

Published online by Cambridge University Press:  14 January 2021

Liliana Espinosa-Leal
Affiliation:
Programa de Doctorado en Oceanografía, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Barrio Universitario s/n, Concepción, Chile Instituto Milenio de Oceanografía, Universidad de Concepción, Concepción, Chile
Johanna Medellín-Mora
Affiliation:
Programa de Doctorado en Oceanografía, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile Ecoreef.Ltda, Calle 174 A # 49B – 46, Bogotá, DC, Colombia
Andrea Corredor-Acosta
Affiliation:
Departamento de Física, Facultad de Ciencias, Universidad del Bío-Bío, Concepción, Chile
Rubén Escribano*
Affiliation:
Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Barrio Universitario s/n, Concepción, Chile Instituto Milenio de Oceanografía, Universidad de Concepción, Concepción, Chile
*
Author for correspondence: Ruben Escribano, E-mail: [email protected]

Abstract

Oceanic islands and seamounts are considered biodiversity hotspots. Here, we present a taxonomy and community analyses of hyperiid amphipods collected near oceanic islands and over seamounts of the Juan Fernández Archipelago and Desventuradas Archipelago in the South-east Pacific. Both archipelagos are separated by about 800 km over the meridional gradient, suggesting the existence of different hyperiid communities because of apparent geographic isolation and distinctive oceanographic characteristics between regions. To test this hypothesis, zooplankton samples were collected from 19 stations during the CIMAR 22 ‘Oceanic Island’ cruise in October–November 2016. In total, 56 species of hyperiids were found, of which Phrosina semilunata, Lestrigonus schizogeneios, Hyperietta stephenseni, Hyperioides longipes, Phronimella elongata and Primno latreillei were the most abundant and recurrent species. The species richness (S), Shannon–Wiener diversity (H’) and dominance (D) of both the archipelagos were not significantly different. Additionally, except for a small group of rare species, the species composition was similar in both areas. Most species showed greater abundances than those observed in the coastal upwelling zone off Chile, whereas shared species between regions suggested the presence of a single biogeographic unit comprising the coastal transition zone and oceanic area off Chile within which both archipelagos are included. Correlation analysis indicated that salinity was the best predictor for the community structure, which provides evidence that the contributions of previously described water masses of the South-east Pacific may influence the spatial distribution and composition of the hyperiid community.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of Marine Biological Association of the United Kingdom

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguirre, JE, Johow, F, Seeger, H, Johow, JC and Rubio, M (2009) Nuevos registros de aves nidificantes en las Islas Desventuradas, Chile insular. Boletín Chileno de Ornitología 15, 4455.Google Scholar
Anderson, M, Gorley, RN and Clarke, KR (2008) PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. Plymouth: PRIMER-E Ltd.Google Scholar
Andrade, I, Hormazabal, SE and Correa-Ramirez, MA (2012) Ciclo anual de la clorofila-a satelital en el archipiélago de Juan Fernández (33°S), Chile. Latin American Journal of Aquatic Research 40, 657667.CrossRefGoogle Scholar
Andrade, I, Hormazábal, S and Correa-Ramírez, M (2014 a) Time-space variability of satellite chlorophyll-a in the Easter Island Province, southeastern Pacific Ocean. Latin American Journal of Aquatic Research 42, 871887.CrossRefGoogle Scholar
Andrade, I, Sangrà, P, Hormazabal, S and Correa-Ramirez, M (2014 b) Island mass effect in the Juan Fernández Archipelago (33°S), Southeastern Pacific. Deep-Sea Research Part I: Oceanographic Research Papers 84, 8699.CrossRefGoogle Scholar
Aniñir Velásquez, KS (2019) Conectividad ecológica y genética de Scolecithrix danae, copépodo epipelágico en la región de montes submarinos del Pacífico Sur Oriental (M.Sc. thesis dissertation). Universidad de Concepción, Concepción, Chile.Google Scholar
Bahamonde, N (1987) San Félix y San Ambrosio, las islas llamadas Desventuradas. In Castilla, JC (ed.), Islas Oceánicas Chilenas: Conocimiento Científico y Necesidades de Investigaciones. Santiago: Ediciones Universidad Católica de Chile, pp. 85100.Google Scholar
Bowman, TE and Gruner, HE (1973) The families and genera of Hyperiidea (Crustacea: Amphipoda). Smithsonian Contributions to Zoology, 164.Google Scholar
Burridge, AK, Tump, M, Vonk, R, Goetze, E and Peijnenburg, KTCA (2016) Diversity and distribution of hyperiid amphipods along a latitudinal transect in the Atlantic Ocean. Progress in Oceanography 158, 224235.CrossRefGoogle Scholar
Chiquito Vite, DA (2012) Sistemática y distribución de los anfípodos planctónicos del mar ecuatoriano durante el crucero oceanográfico CO-II-2011, en septiembre del 2011. Tesis de grado. Universidad Estatal Península de Santa Elena, La Libertad, Ecuador.Google Scholar
Clarke, KR and Warwick, RM (2001) Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd Edn. Plymouth: PRIMER-E Ltd.Google Scholar
Clark, MR, Rowden, AA, Schlacher, T, Williams, A, Consalvey, M, Stocks, KI, Rogers, AD, O'Hara, TD, White, M, Shank, TM and Hall-Spencer, JM (2010) The ecology of seamounts: structure, function, and human impacts. Annual Review of Marine Science 2, 253278.CrossRefGoogle ScholarPubMed
Cornejo D'Ottone, M, Bravo, L, Ramos, M, Pizarro, O, Karstensen, J, Gallegos, M, Correa-Ramirez, M, Silva, N, Farias, L and Karp-Boss, L (2016) Biogeochemical characteristics of a long-lived anticyclonic eddy in the eastern South Pacific Ocean. Biogeosciences (Online) 13, 29712979.CrossRefGoogle Scholar
Dalpadado, P, Yamaguchi, A, Ellertsen, B and Johannessen, S (2008) Trophic interactions of macro-zooplankton (krill and amphipods) in the Marginal Ice Zone of the Barents Sea. Deep-Sea Research Part II: Topical Studies in Oceanography 55, 22662274.CrossRefGoogle Scholar
Dauby, P, Nyssen, F, De Broyer, C, Dauby, P, De Broyer, C and Nyssen, F (2003) Amphipods as food sources for higher trophic levels in the Southern Ocean: a synthesis. In Huiskes, AHL, Gieskes, WWC, Rozema, J, Schorno, RML, van der Vies, SM and Wolff, WJ (eds), Antarctic Biology in a Global Context. Leiden: Backhuys Publishers, pp. 129134.Google Scholar
Dirnböck, T, Greimler, J, Lopez, SP and Stuessy, TF (2003) Predicting future threats to the native vegetation of Robinson Crusoe Island, Juan Fernandez Archipelago, Chile. Conservation Biology 17, 16501659.CrossRefGoogle Scholar
Doty, MS and Oguri, M (1956) The island mass effect. ICES Journal of Marine Science 22, 3337.CrossRefGoogle Scholar
Dyer, BS and Westneat, MW (2010) Taxonomy and biogeography of the coastal fishes of Juan Fernández Archipelago and Desventuradas Islands, Chile. Revista de Biología Marina y Oceanografía 45, 589617.CrossRefGoogle Scholar
Espinosa-Leal, LL and Lavaniegos, BE (2016) Seasonal variability of pelagic amphipods off Baja California during la Niña 2011 and comparison with a “neutral year” (2005). California Cooperative Oceanic Fisheries Investigations Reports 57, 132150.Google Scholar
Espinosa-Leal, L, Escribano, R, Riquelme-Bugueño, R and Corredor-Acosta, A (2020) Distribution and biodiversity patterns of hyperiid amphipods across the coastal-offshore gradient of the sub-tropical Southeast Pacific. Marine Biodiversity. In press.Google Scholar
Farías, L, Faúndez, J, Fernández, C, Cornejo, M, Sanhueza, S and Carrasco, C (2013) Biological N2O fixation in the Eastern South Pacific Ocean and marine cyanobacterial cultures. PLoS ONE 8, e63956. doi: 10.1371/journal.pone.0063956.CrossRefGoogle ScholarPubMed
Fernández, M and Hormazábal, S (2014) Overview of recent advances in oceanographic, ecological and fisheries research on oceanic islands in the southeastern Pacific Ocean. Latin American Journal of Aquatic Research 42, 666672.CrossRefGoogle Scholar
Fierro, P (2019) Estructura comunitaria de copépodos pelágicos asociados a montes submarinos de la Dorsal Juan Fernández (32–34° S) en el Pacífico Sur Oriental (Tesis de Maestría). Universidad de Concepción, Concepción, Chile.Google Scholar
Fordham, DA and Brook, BW (2010) Why tropical island endemics are acutely susceptible to global change. Biodiversity and Conservation 19, 329342.CrossRefGoogle Scholar
Frederick, L, Escribano, R, Morales, CE, Hormazabal, S and Medellín-Mora, J (2018) Mesozooplankton respiration and community structure in a seamount region of the eastern South Pacific. Deep-Sea Research Part I: Oceanographic Research Papers 135, 7487.CrossRefGoogle Scholar
Friedlander, AM, Ballesteros, E, Caselle, JE and Gaymer, CF (2016) Marine biodiversity in Juan Fernández and Desventuradas Islands, Chile: global endemism hotspots. PLoS ONE 11, e0145059. https://doi.org/10.1371/journal.pone.0145059.CrossRefGoogle Scholar
Gasca, R (2007) Hyperiid amhipods of the Sargasso Sea. Bulletin of Marine Science 81, 115125.Google Scholar
Gasca, R (2009) Hyperiid amphipods (Crustacea: Peracarida) in Mexican waters of the Pacific Ocean. Pacific Science 63, 8395.CrossRefGoogle Scholar
Gasca, R and Morales-Ramírez, Á (2012) Anfípodos hiperídeos (Crustacea: Peracarida) del Parque Nacional Isla del Coco, Costa Rica, pacífico Tropical Oriental. Revista de Biología Tropical 60, 223233.Google Scholar
Gasca, R and Shih, C (2003) Hyperiid amphipods of Banco Chinchorro. Bulletin of Marine Science 73, 9198.Google Scholar
Gasca, R, Suárez-Morales, E and Haddock, SHD (2007) Symbiotic associations between crustaceans and gelatinous zooplankton in deep and surface waters off California. Marine Biology 151, 233242.CrossRefGoogle Scholar
Gasca, R, Franco-Gordo, C, Godínez-Domínguez, E and Suárez-Morales, E (2012) Hyperiid amphipod community in the Eastern Tropical Pacific before, during, and after El Niño 1997–1998. Marine Ecology Progress Series 455, 123139.CrossRefGoogle Scholar
González, ER, Haye, PA, Balanda, M and Thiel, M (2008) Lista sistematica de especies de peracaridos de chile (crustacea, eumalacostraca). Gayana 72, 157177.Google Scholar
González, CE, Goetze, E, Escribano, R, Ulloa, O and Victoriano, P (2020) Genetic diversity and novel lineages in the cosmopolitan copepod Pleuromamma abdominalis in the Southeast Pacific. Scientific Reports 10, 115.CrossRefGoogle ScholarPubMed
Grice, GDD and Hart, ADD (1962) The abundance, seasonal occurrence and distribution of the epizooplankton between New York and Bermuda. Ecological Monographs 32, 287309.CrossRefGoogle Scholar
Guillén Pozo, W (2007) Composición y distribución de Amphipoda (Hyperiidae) en aguas ecuatorianas durante el evento de La Niña 2005 (Tesis de grado). Universidad de Guayaquil, Guayaquil, Ecuador.Google Scholar
Hormazabal, S, Shaffer, G and Leth, O (2004) Coastal transition zone off Chile. Journal of Geophysical Research: Oceans 109, 113.CrossRefGoogle Scholar
Kaandorp, JA (1986) Rocky substrate communities of the infralittoral fringe of the Boulonnais coast, NW France: a quantitative survey. Marine Biology 92, 255265.CrossRefGoogle Scholar
Laval, P (1980) Hyperiid amphipods as crustacean parasitoids associated with gelatinous zooplankton. Oceanography and Marine Biology Annual Review 18, 1156.Google Scholar
Lavaniegos, BE (2017) Changes in composition of summer hyperiid amphipods from a subtropical region of the California current during 2002–2008. Journal of Marine Systems 165, 1326.CrossRefGoogle Scholar
Lavaniegos, BE and Ohman, MD (1999) Hyperiid amphipods as indicators of climate change in the California Current. In Frederick, RS and von Vaupel, KJC (eds), Crustaceans and the Biodiversity Crisis Proceedings of the Fourth International Crustacean Congress, Amsterdam, the Netherlands, July 20–24, 1998. Vol. I. Leiden: Brill, pp. 489509. Retrieved from https://escholarship.org/uc/item/18n678sc.Google Scholar
Lavelle, JW and Mohn, C (2010) Motion, commotion, and biophysical connections at deep ocean seamounts. Oceanography 23, 90103.CrossRefGoogle Scholar
Meruane, J (1980) Anfipodos hipéridos encontrados frente a la costa de Vaparaiso, aspectos taxonómicos. Investigaciones Marinas 8, 145182.Google Scholar
Meruane, J (1982) Anfipodos hipéridos recolectados en las aguas circundantes a las islas Robinson Crusoe y Santa Clara. enero 1974. Investigaciones Marinas 10, 3540.Google Scholar
Moraga, J and Argandoña, W (2001) Oceanografía del área costera del Archipiélago de Juan Fernández e Islas San Félix y San Ambrosio. Resultados Crucero CIMAR 6 Islas Oceánicas. Libro de Resúmenes.Google Scholar
Morales, CE, Torreblanca, ML, Hormazabal, S, Correa-Ramírez, M, Nuñez, S and Hidalgo, P (2010) Mesoscale structure of copepod assemblages in the coastal transition zone and oceanic waters off central-southern Chile. Progress in Oceanography 84, 158173.CrossRefGoogle Scholar
Mujica, A and Pavez, C (2008) Eufáusidos de la zona central de Chile, archipiélago Juan Fernández e islas Desventuradas. Latin American Journal of Aquatic Research 36, 283300.CrossRefGoogle Scholar
Myers, N, Mittermeier, RA, Mittermeier, CG, da Fonseca, GAB and Kent, J (2000) Biodiversity hotspots for conservation priorities. Nature 403, 853.CrossRefGoogle ScholarPubMed
Palma, S and Silva, N (2006) Epipelagic siphonophore assemblages associated with water masses along a transect between Chile and Easter Island (eastern South Pacific Ocean). Journal of Plankton Research 28, 11431151.CrossRefGoogle Scholar
Parin, NV, Mironov, AN and Nesis, KM (1997) Biology of the Nazca and Sala y Gômez submarine ridges, an outpost of the Indo-West Pacific fauna in the Eastern Pacific Ocean: composition and distribution of the fauna, its communities and history. Advances in Marine Biology 32, 145–252.CrossRefGoogle Scholar
Pequeño, GR and Sáez, SB (2000) Los peces litorales del archipiélago de Juan Fernández (Chile): Endemismo y relaciones ictiogeográficas. Investigaciones Marinas 28, 2737.CrossRefGoogle Scholar
Petrillo, M, Giallain, M and Della Croce, N (2005) Zooplankton in the surrounding waters of the Juan Fernández Archipelago. Revista de Biologia Marina y Oceanografia 40, 6365.Google Scholar
Pizarro, G, Montecino, V, Astoreca, R, Alarcón, G, Yuras, G and Guzmán, L (2006) Variabilidad espacial de condiciones bio-ópticas de la columna de agua entre las costas de Chile insular y continental. primavera 1999 y 2000. Ciencia y Tecnología Del Mar 29, 4558.Google Scholar
Raimbault, P and Garcia, N (2008) Evidence for efficient regenerated production and dinitrogen fixation in nitrogen-deficient waters of the South Pacific Ocean: impact on new and export production estimates. Biogeosciences (Online) 5, 323338.CrossRefGoogle Scholar
Riascos, JM, Docmac, F, Reddin, C and Harrod, C (2015) Trophic relationships between the large scyphomedusa Chrysaora plocamia and the parasitic amphipod Hyperia curticephala. Marine Biology 162, 18411848.CrossRefGoogle Scholar
Robledo, BO and Mujica, RA (1999) Eufáusidos de Isla de Pascua. Investigaciones Marinas 27, 6572.CrossRefGoogle Scholar
Russell, JC and Kueffer, C (2019) Island biodiversity in the Anthropocene. Annual Review of Environment and Resources 44, 3160.CrossRefGoogle Scholar
Samadi, S, Bottan, L, Macpherson, E, De Forges, BR and Boisselier, M-C (2006) Seamount endemism questioned by the geographic distribution and population genetic structure of marine invertebrates. Marine Biology 149, 14631475.CrossRefGoogle Scholar
Shih, C (1991) Description of two new species of Phronima Latreille, 1802 (Amphipoda: Hyperiidea) with a key to all species of the genus. Journal of Crustacean Biology 11, 322335.CrossRefGoogle Scholar
Shulenberger, E (1977) Hyperiid amphipods from the zooplankton community of the North Pacific Central Gyre. Marine Biology 42, 375385.CrossRefGoogle Scholar
Siegel-Causey, D (1982) Factors Determining the Distribution of Hyperiid Amphipoda in the Gulf of California (PhD thesis). University of Arizona.Google Scholar
Silva, N, Rojas, N and Fedele, A (2009) Water masses in the Humboldt Current System: properties, distribution, and the nitrate deficit as a chemical water mass tracer for Equatorial Subsurface Water off Chile. Deep-Sea Research Part II: Topical Studies in Oceanography 56, 10041020.CrossRefGoogle Scholar
Smith, PE and Richardson, SL (1977) Standard techniques for pelagic fish egg and larva surveys. FAO Fisheries Technical Papers 175. Rome: FAO.Google Scholar
Souza, CS, Conceição, L, Oliveira, P and Junior, M (2016) Hyperiid amphipods around the seamounts and island off northeastern Brazil. Brazilian Journal of Oceanography 64, 339352.CrossRefGoogle Scholar
Stramma, L, Bange, HW, Czeschel, R, Lorenzo, A and Frank, M (2013) On the role of mesoscale eddies for the biological productivity and biogeochemistry in the eastern tropical Pacific Ocean off Peru. Biogeosciences (Online) 10, 72937306.CrossRefGoogle Scholar
Tempestini, A, Fortier, L, Pinchuk, A and Dufresne, F (2017) Molecular phylogeny of the genus Themisto (Guérin, 1925) (Amphipoda: Hyperiidae) in the northern hemisphere. Journal of Crustacean Biology 37, 732742.CrossRefGoogle Scholar
Tolosa, I, Miquel, J-C, Gasser, B, Raimbault, P, Azouzi, L and Claustre, H (2007) Ecology and biogeochemistry of contrasting trophic environments in the South East Pacific by carbon isotope ratios on lipid biomarkers. Biogeosciences Discussions 4, 46534696.Google Scholar
Tranter, HA (1977) Further studies of plankton ecosystems in the eastern Indian Ocean VII. Ecology of the Amphipoda. Marine and Freshwater Research 28, 645662.CrossRefGoogle Scholar
Valencia, B and Giraldo, A (2012) Structure of hyperiid amphipod assemblages on Isla Gorgona, eastern tropical Pacific off Colombia. Journal of the Marine Biological Association of the United Kingdom 92, 14891499.CrossRefGoogle Scholar
Valencia, B, Giraldo, A, Valle, U, De Biología, D and De Investigación, G (2009) Hipéridos (Crustacea: Amphipoda) en el sector norte del Pacífico oriental tropical colombiano. Latin American Journal of Aquatic Research 37, 265273.CrossRefGoogle Scholar
Valencia, B, Lavaniegos, B, Giraldo, A and Rodríguez-Rubio, E (2013) Temporal and spatial variation of hyperiid amphipod assemblages in response to hydrographic processes in the Panama Bight, eastern tropical Pacific. Deep-Sea Research Part I: Oceanographic Research Papers 73, 4661.CrossRefGoogle Scholar
Vinogradov, GM (1991) Hyperiid amphipods in the eastern part of the South Pacific gyre. Marine Biology 109, 259265.CrossRefGoogle Scholar
Vinogradov, ME, Volkov, AF and Semenova, TN (1996) Hyperiid Amphipods (Amphipoda, Hyperiidea) of the World Oceans (Siegel-Causey, D, ed.). Washington, DC: Smithsonian Institution Libraries.Google Scholar
Von Dassow, P and Collado-Fabbri, S (2014) Biological oceanography, biogeochemical cycles, and pelagic ecosystem functioning of the east central South Pacific Gyre: focus on Easter Island and Salas y Gomez Island. Latin American Journal of Aquatic Research 42, 703742.CrossRefGoogle Scholar
Wang, WL, Moore, JK, Martiny, AC and Primeau, FW (2019) Convergent estimates of marine nitrogen fixation. Nature 566, 205211.CrossRefGoogle ScholarPubMed
Weil, J, Duguid, WD and Juanes, F (2019) A hyperiid amphipod acts as a trophic link between a scyphozoan medusa and juvenile chinook salmon. Estuarine, Coastal and Shelf Science 223, 1824.CrossRefGoogle Scholar
Yáñez, E, Silva, C, Vega, R, Espíndola, F, Álvarez, L, Silva, N, Palma, S, Salinas, S, Menschel, E, Häussermann, V, Soto, D and Ramírez, N (2009) Seamounts in the southeastern Pacific Ocean and biodiversity on Juan Fernandez seamounts Chile. Latin American Journal of Aquatic Research 37, 555570.CrossRefGoogle Scholar
Zeidler, W (1984) Distribution and abundance of some hyperiidea (Crustacea: Amphipoda) in northern Queensland waters. Marine and Freshwater Research 35, 285305.CrossRefGoogle Scholar
Zeidler, W (2004) A review of the families and genera of the hyperiidean amphipod superfamily Phronimoidea Bowman & Gruner, 1973 (Crustacea: Amphipoda: Hyperiidea). Zootaxa 567, 66.CrossRefGoogle Scholar
Zeidler, W (2016) A review of the families and genera of the superfamily Platysceloidea Bowman & Gruner, 1973 (Crustacea: Amphipoda: Hyperiidea), together with keys to the families, genera and species. Zootaxa 4192.Google Scholar
Zhaoli, X (2009) Statistical analysis on ecological adaptation of pelagic Amphipoda in the East China Sea. Acta Oceanologica Sinica 28, 6169.Google Scholar
Supplementary material: File

Espinosa-Leal et al. supplementary material

Table S2
Download Espinosa-Leal et al. supplementary material(File)
File 15.9 KB
Supplementary material: File

Espinosa-Leal et al. supplementary material

Figure S1
Download Espinosa-Leal et al. supplementary material(File)
File 26.1 KB
Supplementary material: File

Espinosa-Leal et al. supplementary material

Table S1
Download Espinosa-Leal et al. supplementary material(File)
File 14.7 KB