Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T08:25:29.504Z Has data issue: false hasContentIssue false

Combined analysis of four mitochondrial regions allowed the detection of several matrilineal lineages of the lessepsian fish Fistularia commersonii in the Mediterranean Sea

Published online by Cambridge University Press:  27 September 2010

Daria Sanna
Affiliation:
Dipartimento di Zoologia e Genetica Evoluzionistica, Università di Sassari, Via F. Muroni 25, 07100 Sassari, Italy
Paolo Merella
Affiliation:
Sezione di Parassitologia e Malattie Parassitarie, Dipartimento di Biologia Animale, Università di Sassari, Via Vienna 2, 07100 Sassari, Italy
Tiziana Lai
Affiliation:
Dipartimento di Zoologia e Genetica Evoluzionistica, Università di Sassari, Via F. Muroni 25, 07100 Sassari, Italy
Sarra Farjallah
Affiliation:
Unité de Recherche: Génétique, Biodiversité et Valorisation des Bioressources UR/09-30, Institut Supérieur de Biotechnologie de Monastir, Monastir 5000, Tunisia
Paolo Francalacci
Affiliation:
Dipartimento di Zoologia e Genetica Evoluzionistica, Università di Sassari, Via F. Muroni 25, 07100 Sassari, Italy
Marco Curini-Galletti
Affiliation:
Dipartimento di Zoologia e Genetica Evoluzionistica, Università di Sassari, Via F. Muroni 25, 07100 Sassari, Italy
Antonio Pais
Affiliation:
Sezione di Acquacoltura e Gestione delle Risorse Acquatiche, Dipartimento di Scienze Zootecniche, Università di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy
Marco Casu*
Affiliation:
Dipartimento di Zoologia e Genetica Evoluzionistica, Università di Sassari, Via F. Muroni 25, 07100 Sassari, Italy
*
Correspondence should be addressed to: M. Casu, Dipartimento di Zoologia e Genetica Evoluzionistica, Università di Sassari, Via F. Muroni 25, 07100 Sassari (Italy) email: [email protected]

Abstract

The bluespotted cornetfish (Fistularia commersonii) is an Indo-Pacific species that in the last ten years colonized a large part of the Mediterranean basin. The aim of this study was to sequence some portions of the mitochondrial DNA (D-loop II, 16S, 12S and Cyt b) of this fish from different localities of the Mediterranean Sea, in order to evaluate the level of its genetic variability in this area. The genetic analysis performed on specimens from seven localities of Sardinia, Tunisia and Libya revealed the presence of at least five mitochondrial lineages. The results obtained, compared with previous studies, indicate that the use of a sufficient number of mitochondrial regions may allow a more accurate estimate of genetic variability in lessepsian invasions.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Azzurro, E., Pizzicori, P. and Andaloro, F. (2004) First record of Fistularia commersonii (Fistularidae) from the central Mediterranean. Cybium 28, 7274.Google Scholar
Azzurro, E., Golani, D., Bucciarelli, G. and Bernardi, G. (2006) Genetics of the early stage of invasion of the lessepsian rabbitfish Siganus luridus. Journal of Experimental Marine Biology and Ecology 333, 190201.CrossRefGoogle Scholar
Bandelt, H.J., Forster, P. and Rohl, A. (1999) Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16, 3748.CrossRefGoogle ScholarPubMed
Ben Souissi, J., Zaouali, J., Bradai, M.N. and Quignard, J.P. (2004) Lessepsian migrant fishes off the coast of Tunisia. First record of Fistularia commersonii (Osteichthyes, Fistularidae) and Parexocoetus mento (Osteichthyes, Exocoetidae). Vie et Milieu 54, 247248.Google Scholar
Bernardi, G., Golani, D. and Azzurro, E. (2010) The genetics of lessepsian bioinvasions. In Golani, D. and Appelbaum-Golani, B. (eds) Fish invasions of the Mediterranean Sea: change and renewal. Sofia and Moscow: Pensoft Publishers, pp. 7184.Google Scholar
Bilecenoglu, M., Taskavak, E. and Kunt, K.B. (2002) Range extension of three lessepsian migrant fish (Fistularia commersonii, Sphyraena flavicauda, Lagocephalus suezensis) in the Mediterranean Sea. Journal of the Marine Biological Association of the United Kingdom 82, 525526.CrossRefGoogle Scholar
Bull, J.J., Huelsenbeck, J.P., Cunningham, C.W., Swofford, D.L. and Waddell, P.J. (1993) Partitioning and combining data in phylogenetic analysis. Systematic Biology 42, 384397.CrossRefGoogle Scholar
Chippindale, P.T. and Wiens, J.J. (1994) Weighting, partitioning, and combining characters in phylogenetic analysis. Systematic Biology 43, 278287.CrossRefGoogle Scholar
Clements, K.D., Gray, R.D. and Choat, J.H. (2003) Rapid evolutionary divergences in reef fishes of the family Acanthuridae (Perciformes: Teleostei). Molecular Phylogenetics and Evolution 26, 190201.CrossRefGoogle ScholarPubMed
Corsini, M., Kondilatos, G. and Economidis, P.S. (2002) Lessepsian migrant Fistularia commersonii from the Rhodes marine area. Journal of Fish Biology 61, 10611062.CrossRefGoogle Scholar
Cunningham, C.W. (1997) Is congruence between data partitions a reliable predictor of phylogenetic accuracy? Systematic Biology 46, 464478.CrossRefGoogle ScholarPubMed
Dulčić, J., Scordella, G. and Guidetti, P. (2008) On the record of the lessepsian migrant Fistularia commersonii (Rüppell, 1835) from the Adriatic Sea. Journal of Applied Ichthyology 24, 101102.CrossRefGoogle Scholar
Farias, I.P., Ortí, G. and Meyer, A. (2000) Total evidence: molecules, morphology, and the phylogenetics of cichlid fishes. Journal of Experimental Biology 288, 7692.Google ScholarPubMed
Farris, J.S., Kallersjo, M., Kluge, A.G. and Bult, C. (1995) Constructing a significance test for incongruence. Systematic Biology 44, 570572.CrossRefGoogle Scholar
Galil, B.S. (2000) A sea under siege—alien species in the Mediterranean. Biological Invasions 2, 177186.CrossRefGoogle Scholar
Giribet, G., Edgecombe, G.D. and Wheeler, W.C. (2001) Arthropod phylogeny based on eight molecular loci and morphology. Nature 413, 157161.CrossRefGoogle ScholarPubMed
Golani, D. (2000) First record of the bluespotted cornetfish from the Mediterranean Sea. Journal of Fish Biology 56, 15451547.CrossRefGoogle Scholar
Golani, D., Azzurro, E., Corsini-Foka, M., Falautano, M., Andaloro, F. and Bernardi, G. (2007) Genetic bottlenecks and successful biological invasions: the case of a recent lessepsian migrant. Biology Letters 3, 541545.CrossRefGoogle ScholarPubMed
Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 9598.Google Scholar
Hassan, M. and Bonhomme, F. (2005) No reduction in neutral variability of mitochondrial and nuclear genes for a Lessepsian migrant, Upeneus moluccensis. Journal of Fish Biology 66, 865870.CrossRefGoogle Scholar
Hassan, M., Harmelin-Vivien, M. and Bonhomme, F. (2003) Lessepsian invasion without bottleneck: example of two rabbitfish species (Siganus rivulatus and Siganus luridus). Journal of Experimental Marine Biology and Ecology 291, 219232.CrossRefGoogle Scholar
Hemida, F. and Capapé, C. (2009) On the occurrence of a lessepsian migrant teleost off the Algerian coast (south-western Mediterranean): the bluespotted cornetfish, Fistularia commersonii (Fistularidae). Cybium 33, 8182.Google Scholar
Karachle, P.K., Triantaphyllidis, C. and Stergiou, K.I. (2004) Bluespotted cornetfish, Fistularia commersonii Rüppell, 1838: a lessepsian sprinter. Acta Ichthyologica et Piscatoria 34, 103108.CrossRefGoogle Scholar
Kocher, T.D., Thomas, W.K., Meyer, A, Edwards, S.V., Pääbo, S., Villablanca, F.X. and Wilson, A.C. (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences of the United States of America 86, 61966200.CrossRefGoogle ScholarPubMed
Merella, P., Casu, M., Garippa, G. and Pais, A. (2010) Lessepsian fish migration: genetic bottlenecks and parasitological evidence. Journal of Biogeography 37, 978980.CrossRefGoogle Scholar
Neigel, J.E. (1997) A comparison of alternative strategies for estimating gene flow from genetic markers. Annual Review of Ecology and Systematics 28, 105128.CrossRefGoogle Scholar
Pääbo, S., Thomas, W.K., Whitfield, K.M., Kumazawa, Y. and Wilson, A.C. (1991) Rearrangements of mitochondrial transfer RNA genes in marsupials. Journal of Molecular Evolution 33, 426430.CrossRefGoogle ScholarPubMed
Pais, A., Merella, P., Follesa, M.C. and Garippa, G. (2007) Westward range expansion of the Lessepsian migrant Fistularia commersonii (Fistulariidae) in the Mediterranean Sea, with notes on its parasites. Journal of Fish Biology 70, 269277.CrossRefGoogle Scholar
Pogson, G.H., Mesa, K.A. and Boutilier, R.G. (1995) Genetic population structure and gene flow in the Atlantic cod Gadus morhua: a comparison of allozyme and nuclear RFLP loci. Genetics 139, 375385.CrossRefGoogle ScholarPubMed
Por, F.D. (1971) One hundred years of Suez Canal—a century of lessepsian migration: retrospect and viewpoints. Systematic Zoology 20, 138159.CrossRefGoogle Scholar
Posada, D. and Crandall, K.A. (1998) ModelTest: testing the model of DNA substitution, version 3.7. Bioinformatics 14, 817818.CrossRefGoogle Scholar
Redd, A.J. and Stoneking, M. (1999) Peopling of Sahul: mtDNA variation in aboriginal Australian and Papua New Guinean populations. American Journal of Human Genetics 65, 808828.CrossRefGoogle ScholarPubMed
Rilov, G. and Galil, B.S. (2009) Marine bioinvasions in the Mediterranean Sea—history, distribution and ecology. In Rilov, G. and Crooks, J.A. (eds) Biological invasions in marine ecosystems. Berlin and Heidelberg: Springer-Verlag, pp. 549575.CrossRefGoogle Scholar
Rozas, J. and Rozas, R. (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15, 174175.CrossRefGoogle ScholarPubMed
Saccone, C., Pesole, G. and Sbisà, E. (1991) The main regulatory region of mammalian mitochondrial DNA: structure–function model and evolutionary pattern. Journal of Molecular Evolution 33, 8391.CrossRefGoogle ScholarPubMed
Sanna, D., Addis, A., Biagi, F., Motzo, C., Carcupino, M. and Francalacci, P. (2008) mtDNA control region and D-HPLC analysis: a method to evaluate the mating system in Syngnathidae (Teleostei). Marine Biology 153, 269275.CrossRefGoogle Scholar
Sax, D.F., Stachowicz, J.J., Brown, J.H., Bruno, J.F., Dawson, M.N., Gaines, S.D., Grosberg, R.K., Hastings, A., Holt, R.D., Mayfield, M.M., O'Connor, M.I. and Rice, W.R. (2007) Ecological and evolutionary insights from species invasions. Trends in Ecology and Evolution 22, 465471.CrossRefGoogle ScholarPubMed
Spalding, M.D., Fox, H.E., Allen, G.R., Davidson, N., Ferdaña, Z.A., Finlayson, M., Halpern, B.S., Jorge, M.A., Lombana, A., Lourie, S.A., Martin, K.D., McManus, E., Molnar, J., Recchia, C.A. and Robertson, J. (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57, 573583.CrossRefGoogle Scholar
Spencer, C., Neigel, J.E. and Leberg, P.L. (2000) Experimental evaluation of the usefulness of microsatellite DNA for detecting demographic bottlenecks. Molecular Ecology 9, 15171528.CrossRefGoogle ScholarPubMed
Sullivan, J. (1996) Combining data with different distributions of among-site rate variation. Systematic Biology 45, 375380.CrossRefGoogle Scholar
Swofford, D.L. (2003) PAUP* Phylogenetic Analysis Using Parsimony (*and other methods), Version 4. Sunderland, MA: Sinauer Associates.Google Scholar
Tang, Q., Liu, H., Maydenc, R. and Xiong, B. (2006) Comparison of evolutionary rates in the mitochondrial DNA cytochrome b gene and control region and their implications for phylogeny of the Cobitoidea (Teleostei: Cypriniformes). Molecular Phylogenetetics and Evolution 39, 347357.CrossRefGoogle ScholarPubMed
Teske, P.R., Cherry, M.I. and Matthee, C.A. (2003) Population genetics of the endangered Knysna seahorse, Hippocampus capensis. Molecular Ecology 12, 17031715.CrossRefGoogle ScholarPubMed
Wilson, A.B., Vincent, A., Ahnesjo, I. and Meyer, A. (2001) Male pregnancy in seahorses and pipefishes (Family Syngnathidae): rapid diversification of paternal brood pouch morphology inferred from a molecular phylogeny. Journal of Heredity 92, 159166.CrossRefGoogle ScholarPubMed