Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T06:14:38.817Z Has data issue: false hasContentIssue false

Changes in the composition and structure of a molluscan assemblage due to eelgrass loss in southern Spain (Alboran Sea)

Published online by Cambridge University Press:  02 June 2009

José L. Rueda*
Affiliation:
Departamento de Biología Animal, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
Pablo Marina
Affiliation:
Departamento de Biología Animal, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
Javier Urra
Affiliation:
Departamento de Biología Animal, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
Carmen Salas
Affiliation:
Departamento de Biología Animal, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
*
Correspondence should be addressed to: José L. Rueda, Departamento de Biología Animal, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain email: [email protected]

Abstract

The composition and structure of a molluscan assemblage was studied in a deep subtidal eelgrass bed located in southern Spain before and after the eelgrass decline experienced during 2005 and 2006 due to illegal trawling by fishermen. Sampling was undertaken in summer 2004 (with eelgrass) and summer 2007 (without eelgrass) in an extensive eelgrass bed located in Cañuelo Bay (12–14 m depth) and in the same area once the eelgrass bed disappeared. Eelgrass was completely absent in those samples of summer 2007 and an increase of the organic content and mud was registered in the sediment between 2004 and 2007. The density and the richness of molluscan species decreased significantly in summer 2007, especially for epifaunal gastropods associated with the leaf and sediment stratum. Some species disappeared completely in summer 2007 such as the dominant periphyton grazers Jujubinus striatus and Rissoa spp., the egg feeder Mitrella minor and the seagrass feeder Smaragdia viridis as well as the infaunal bivalve Solemya togata. Other species increased their densities such as the carnivores Cylichna crossei or C. cylindracea as well as the bivalve Nucula nitidosa. Some dominant infaunal species, such as Chamelea gallina, Spisula subtruncata or Tellina fabula did not significantly change their densities. The composition and structure of the assemblages in summer 2004 and summer 2007 was significantly different according to the Bray–Curtis similarity index using qualitative and quantitative data and considering the entire assemblage (epifaunal and infaunal species) or only the infaunal species. The registered changes in the molluscan assemblage may have produced cascade effects in higher trophic levels because molluscs generally represent an important food source for some decapods and fish. Urgent conservation measures are needed for protecting the remaining fragmented eelgrass beds of southern Spain from further illegal fisheries activities and other types of human impacts (e.g. sand extraction and coastal infrastructures), because they support the most diverse faunistic communities for eelgrass beds in Europe due to their bathymetry and geographical location.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arroyo, M.C., Salas, C., Rueda, J.L. and Gofas, S. (2006) Temporal changes of mollusc populations from a Zostera marina bed in southern Spain (Alboran Sea), with biogeographic considerations. Marine Ecology 27, 417430.Google Scholar
Attrill, M.J., Strong, J.A. and Rowden, A.A. (2000) Are macroinvertebrate communities influenced by seagrass structural complexity? Ecography 23, 114121.CrossRefGoogle Scholar
Bañares-España, E., Báez, J.C., Casado, M.D., Díaz de Rada, C., Flores-Moya, A. and Rey, J. (2002) Distribución y estado de las fanerógamas marinas en el Paraje natural Acantilados de Maro-Cerro gordo (Málaga–Granada). In García-Gómez, J.C. and Finlayson, C. (eds) Resúmenes del XII Simposio Ibérico del Bentos Marino, La Línea de la Concepción y Gibraltar, 22–25 October 2002. Algeciras: Impresur, pp. 3031.Google Scholar
Barrajón, A., Moreno, D. and Pérez-Llorens, J.L. (2004) Zostera marina. Distribución en Andalucía. In Luque, A.A. and Templado, J. (eds) Praderas y bosques marinos de Andalucía. Sevilla: Consejería de Medio Ambiente, Junta de Andalucía, pp. 157158.Google Scholar
Boillot, G. (1960) La répartition des fonds sous-marins au large de Roscoff. Cahiers de Biologie Marine 1, 323.Google Scholar
Boström, C. and Bonsdorff, E. (1997) Community structure and spatial variation of benthic invertebrates associated with Zostera marina (L.) beds in the northern Baltic Sea. Journal of Sea Research 37, 153166.CrossRefGoogle Scholar
Bowden, D.A., Rowden, A.A. and Attrill, M.J. (2001) Effect of patch size and in-patch location on the infaunal macroinvertebrate assemblages of Zostera marina seagrass beds. Journal of Experimental Marine Biology and Ecology 259, 133154.CrossRefGoogle ScholarPubMed
Bray, R.J. and Curtis, J.T. (1957) An ordination of the uplands forest communities of southern Wisconsin. Ecological Monographs 27, 325347.Google Scholar
Buchanan, J.B. (1984) Sediment analysis. In Holme, N.A. and McIntyre, A.D. (eds) Methods for the study of marine benthos. Oxford: Blackwell, pp. 4165.Google Scholar
Carlton, J.T., Vermeij, G.J., Lindberg, D.R., Carlton, D.A. and Dudley, E.C. (1991) The first historical extinction of a marine invertebrate in a Ocean Basin: the demise of the eelgrass limpet Lottia alveus. Biological Bulletin. Marine Biological Laboratory, Woods Hole 180, 7280.Google Scholar
Clarke, K.R. (1993). Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18, 117143.CrossRefGoogle Scholar
Currás, A., Sánchez-Mata, A. and Mora, J. (1993). Estudio comparativo de la macrofauna bentónica de un fondo de Zostera marina y un fondo arenoso libre de cubierta vegetal. Cahiers de Biologie Marine 35, 91112.Google Scholar
De Jonge, V.N. and De Jong, D.J. (1992) Role of tide, light and fisheries in the decline of Zostera marina L. in the Dutch Wadden Sea. Netherlands Institute for Sea Research Publications Series 20, 161176.Google Scholar
Duarte, C.M. (2002) The future of seagrass meadows. Environmental Conservation 29, 192206.CrossRefGoogle Scholar
Ekman, S. (1953) Zoogeography of the sea. London: Sidgwick and Jackson.Google Scholar
Erftemeijer, P.L.A. and Robin Lewis, R.R. (2006) Environmental impacts of dredging on seagrasses: a review. Marine Pollution Bulletin 52, 15531572.Google Scholar
Fonseca, M.S., Thayer, G.W. and Chester, A.J. (1984) Impact of scallop harvesting on eelgrass (Zostera marina) meadows. Implications for management. North American Journal of Fisheries Management 4, 286293.Google Scholar
Frost, M.T., Rowden, A.A. and Attrill, M.J. (1999) Effect of habitat fragmentation on the macroinvertebrate infaunal communities associated with the seagrass Zostera marina L. Aquatic Conservation: Marine and Freshwater Ecosystems 9, 255263.3.0.CO;2-F>CrossRefGoogle Scholar
Glémarec, M. (1969) Les peuplements benthiques du plateau continental Nord-Gascogne. PhD thesis. University of Paris, Paris, France.Google Scholar
Gofas, S. (1999) Marine molluscs with a very small range in the Strait of Gibraltar. Diversity and Distributions 4, 255266.Google Scholar
Green, E.P. and Short, F.T. (2003) World atlas of seagrasses. California: University of California Press.Google Scholar
Guidetti, P., Lorenti, M., Buia, M.C. and Mazzella, L. (2002) Temporal dynamics and biomass partitioning in three Adriatic seagrass species: Posidonia oceanica, Cymodocea nodosa, Zostera marina. P S Z N I: Marine Ecology 23, 5167.Google Scholar
Hemminga, M.A. and Duarte, C.M. (2000) Seagrass ecology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hily, C. and Bouteille, M. (1999) Modifications of the specific diversity and feeding guilds in an intertidal sediment colonized by an eelgrass meadow (Zostera marina) (Brittany, France). Comptes Rendus de l'Académie des Sciences, Paris, Sciences de la Vie/Life Sciences 322, 11211131.Google Scholar
Irlandi, E.A. (1997) Seagrass patch size and survivorship of an infaunal bivalve. Oikos 78, 511518.CrossRefGoogle Scholar
Jeffrey, S. and Humphrey, G.T. (1975) New spectophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and phytoplankton. Biochemie und Physiologie der Pflanzen 167, 191194.CrossRefGoogle Scholar
Krebs, C.J. (1989) Ecological methodology. New York: Harper and Row.Google Scholar
Laugier, T., Rigollet, V. and de Casabianca, M.L. (1999) Seasonal dynamics in mixed eelgrass beds Zostera marina L. and Z. noltii Hornem. in a Mediterranean coastal lagoon (Thau lagoon, France). Aquatic Botany 63, 5169.Google Scholar
Mars, P. (1966) Recherches sur quelques étangs du litoral méditerranéen français et sur leurs faunes malacologiques. Vie et Milieu Supplement 20, 1359.Google Scholar
Moksnes, P., Gullström, M., Tryman, K. and Baden, S. (2008) Trophic cascades in a temperate seagrass community. Oikos 117, 763777.Google Scholar
Moore, K.A. and Short, F.T. (2006) Zostera: biology, ecology and management. In Larkum, A.W.D., Orth, R.J. and Duarte, C.M. (eds) Seagrasses: biology, ecology and conservation. Dordrecht: Springer, pp. 361386.Google Scholar
Moreno, D. and Guirado, J. (2003) Nuevos datos sobre la distribución de las fanerógamas marinas en las provincias de Almería y Granada (SE España). Acta Botanica Malacitana 28, 105120.CrossRefGoogle Scholar
Neckles, H.A., Short, F.T., Barker, S. and Kopp, B.S. (2005) Disturbance of eelgrass (Zostera marina L.) by commercial mussel (Mytilus edulis) harvesting in Maine: dragging impacts and habitat recovery. Marine Ecology Progress Series 285, 5773.Google Scholar
Orth, R.J., Fishman, J.R., Wilcox, D.J. and Moore, K.A. (2002) Identification and management of fishing gear impacts in a recovering seagrass system in the coastal bays of the Delmarva peninsula, USA. Journal of Coastal Research 37, 111129.Google Scholar
Peduzzi, P. (1987) Dietary preferences and carbon absorption by two grazing gastropods Gibbula umbilicaris (Linné) and Jujubinus striatus. P S Z N I: Marine Ecology 8, 359370.Google Scholar
Peñas, A., Rolán, E., Luque, Á.A., Templado, J., Moreno, D., Rubio, F., Salas, C., Sierra, A. and Gofas, S. (2006) Moluscos marinos de la isla de Alborán. Iberus 24, 23151.Google Scholar
Phillips, R.C. and McRoy, C.P. (1990) Seagrass research methods. Monographs on oceanographic methodology, volume 9. Paris: UNESCO.Google Scholar
Pielou, E.C. (1969) An introduction to mathematical ecology. New York: Wiley-Interscience.Google Scholar
Ralph, P.J., Tomasko, D., Seddon, S., Moore, K. and Macinnis-Ng, C. (2006) Human impacts on seagrasses: eutrophication, sedimentation and contamination. In Larkum, A.W.D., Orth, R.J. and Duarte, C.M. (eds) Seagrasses: biology, ecology and conservation. Dordrecht: Springer, pp. 567593.Google Scholar
Reid, R.G.B. (1998) Subclass Protobranchia. In Beesley, P.L., Ross, G.J.B. and Wells, A. (eds) Mollusca: the southern synthesis. Volume 5. Melbourne: CSIRO Publishing, pp. 235247.Google Scholar
Rodríguez, J.A. and Cabrera, J.E. (2005) Una valiosa pradera submarina en Málaga, destruida por arrastreros. Quercus 235, 6465.Google Scholar
Rueda, J.L. (2007) Malacofauna asociada a praderas de Zostera marina del Paraje Natural ‘Acantilados de Maro–Cerro Gordo’ (Sur España). PhD thesis. University of Malaga, Malaga, Spain.Google Scholar
Rueda, J.L., Salas, C. and Gofas, S. (2000) A molluscan community from bioclastic bottoms in the Strait of Gibraltar area. Iberus 18, 95123.Google Scholar
Rueda, J.L., Fernández-Casado, M., Salas, C. and Gofas, S. (2001) Seasonality in a taxocenosis of molluscs from soft bottoms in the Bay of Cádiz (southern Spain). Journal of the Marine Biological Association of the United Kingdom 81, 903912.Google Scholar
Rueda, J.L. and Salas, C. (2003a) Temporal dynamics of molluscan assemblages from soft and bioclastic bottoms in the Strait of Gibraltar. Cahiers de Biologie Marine 44, 237248.Google Scholar
Rueda, J.L. and Salas, C. (2003b) Seasonal variation of a molluscan assemblage living in a Caulerpa prolifera meadow within the inner Bay of Cádiz (SW Spain). Estuarine, Coastal and Shelf Science 57, 909918.Google Scholar
Rueda, J.L. and Salas, C. (2007) Trophic dependence of the emerald neritid Smaragdia viridis (Linnaeus, 1758) on two seagrasses from European coasts. Journal of Molluscan Studies 73, 211214.Google Scholar
Rueda, J.L. and Salas, C. (2008) Molluscs associated with a subtidal Zostera marina L. bed in southern Spain: linking seasonal changes of fauna and environmental variables. Estuarine, Coastal and Shelf Science 79, 157167.CrossRefGoogle Scholar
Rueda, J.L., Marina, P., Salas, C. and Urra, J. (2008a) Jujubinus striatus (Linnaeus, 1758) (Gastropoda: Trochidae) from a deep Zostera marina bed in southern Spain (Alboran Sea): aspects of ecology and biology. Journal of Molluscan Studies 74, 345354.CrossRefGoogle Scholar
Rueda, J.L., Salas, C. and Marina, P. (2008b) Seasonal dynamics of a deep subtidal Zostera marina L. bed in southern Spain (western Mediterranean Sea). Botanica Marina 51, 92102.Google Scholar
Rueda, J.L., Urra, J. and Salas, C. (2008c) Diel and seasonal variation of a molluscan taxocoenosis associated with a Zostera marina bed in southern Spain (Alboran Sea). Helgoland Marine Research 62, 227240.CrossRefGoogle Scholar
Sfriso, A., Birkemeyer, T. and Ghetti, P.F. (2001) Benthic macrofauna changes in areas of Venice lagoon populated by seagrasses or seaweeds. Marine Environmental Research 52, 323349.CrossRefGoogle ScholarPubMed
Short, F.T. and Neckles, H.A. (1999) The effects of global climate change on seagrasses. Aquatic Botany 63, 169196.Google Scholar
Trask, P.D. (1950) Applied sedimentation. New York: John Wiley & Sons Inc.Google Scholar
Turner, S.J. and Kendall, M.A. (1999) A comparison of vegetated and unvegetated soft-sediment macrobenthic communities in the River Yealm, south-western Britain. Journal of the Marine Biological Association of the United Kingdom 79, 741743.CrossRefGoogle Scholar
Urra, J., Marina, P. and Rueda, J.L. (2008) SOS por las praderas marinas en la Costa del Sol. Quercus 270, 2837.Google Scholar
Van Aartsen, J.J., Menkhorst, H.P. and Gittenberger, E. (1984) The marine mollusca of the Bay of Algeciras, Spain, with general notes on Mitrella, Marginellidae and Turridae. Basteria 2, 1135.Google Scholar
Webster, P.J., Rowden, A.A. and Attrill, M.J. (1998) Effect of shoot density on the infaunal macro-invertebrate community within a Zostera marina seagrass bed. Estuarine, Coastal and Shelf Science 47, 351357.CrossRefGoogle Scholar
Williams, S.L. and Heck, K.L. Jr (2001) Seagrass community ecology. In Bertness, M.D., Gaines, S.D. and Hay, M.E. (eds) Marine community ecology. Sunderland, MA: Sinauer Associates Inc, pp. 317337.Google Scholar