Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T14:35:53.240Z Has data issue: false hasContentIssue false

Cadmium accumulation, distribution and metabolism in the gastropod Littorina littorea: the role of metal-binding proteins

Published online by Cambridge University Press:  11 May 2009

W. J. Langston
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth PL1 2PB
Mingjiang Zhou
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth PL1 2PB

Extract

Cadmium, and its compounds, has been placed on the blacklists of most international pollution conventions by virtue of its toxicity, potential for bioaccumulation and persistence (Taylor, 1983).

The ability of many marine molluscs, and in particular gastropods, to accumulate Cd to a high degree in apparently unregulated fashion has led to their frequent use in monitoring programmes. Thus Cd levels in the winkle, Littorina littorea (L.) closely reflect gradients in environmental contamination (Bryan et al. 1983), demonstrating the excellent ‘indicator’ properties of this group.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brouwer, M. & Engel, D. W., 1982. Stoichiometry and functional consequences of Hg(II) and Cd(II) binding to arthropod hemocyanins. In Physiological Mechanisms of Marine Pollutant Toxicity (ed. Vernberg, W. B.et al.), pp. 289310. New York: Academic Press.CrossRefGoogle Scholar
Brouwer, M., Brouwer-Hoexum, T. & Engel, D. W., 1984. Cadmium accumulation by the blue crab, Callinectes sapidus: involvement of haemocyanin and characterization of cadmiumbinding proteins. Marine Environmental Research, 14, 7188.CrossRefGoogle Scholar
Brown, D. A., Gosset, R. W., Hershelman, P., Schaefer, H. A., Jenkins, K. D. & Perkins, E. M., 1983. Bioaccumulation and detoxification of contaminants in marine organisms from southern California coastal waters. In Waste Disposal in the Oceans (ed. Soule, D. F. and Walsh, D.), pp. 171193. Boulder, Colorado: Westview Press.Google Scholar
Bryan, G. W., 1964. Zinc regulation in the lobster Homarus vulgaris. I. Tissue zinc and copper concentrations. Journal of the Marine Biological Association of the United Kingdom, 44, 549563.CrossRefGoogle Scholar
Bryan, G. W., Langston, W. J., Hummerstone, L. G., Burt, G. R. & Ho, Y. B., 1983. An assessment of the gastropod, Littorina littorea, as an indicator of heavy-metal contamination in United Kingdom estuaries. Journal of the Marine Biological Association of the United Kingdom, 63, 327345.CrossRefGoogle Scholar
Carpene, E. & George, S. G., 1981. Absorption of cadmium by gills of Mytilus edulis (L.). Molecular Physiology, 1, 2324.Google Scholar
Evtushenko, Z. S., Belcheva, N. N. & Lukyanova, O. N., 1986. Cadmium accumulation in organs of the scallop Mizuhopecten yessoensis. II. Subcellular distribution of metals and metal-binding proteins. Comparative Biochemistry and Physiology, 83C, 377383.Google Scholar
Fowler, S. W. & Benayoun, G., 1974. Experimental studies on cadmium flux through marine biota. In Comparative Studies of Food and Environmental Contamination, pp. 159174. Vienna. [IAEA report SM-175/10.]Google Scholar
Frazier, J. M. & George, S. G., 1983. Cadmium kinetics in oysters-a comparative study of Crassostrea gigas and Ostrea edulis. Marine Biology, 76, 5561.CrossRefGoogle Scholar
Frazier, J. M., George, S. G., Overnell, J., Coombs, T. L. & Kagi, J., 1985. Characterisation of two molecular weight classes of cadmium binding proteins from the mussel, Mytilus edulis (L.). Comparative Biochemistry and Physiology, 80C, 257262.Google Scholar
Jackim, E., Morrison, G. & Steele, R., 1977. Effects of environmental factors on radiocadmium uptake by four species of marine bivalves, Marine Biology, 40, 303308.CrossRefGoogle Scholar
Langston, W. J. & Zhou, M., 1986. Evaluation of the significance of metal-binding proteins in the gastropod Littorina littorea. Marine Biology, 92, 505515.CrossRefGoogle Scholar
Langston, W. J. & Zhou, M., 1987. Cadmium accumulation, distribution and elimination in the bivalve Macoma balthica: neither metallothionein nor metallothionein-like proteins are involved. Marine Environmental Research, 21, 225237.CrossRefGoogle Scholar
Mason, A. Z. & Nott, J. A., 1980. The association of the blood vessels and the excretory epithelium in the kidney of Littorina littorea (L.) (Mollusca, Gastropoda). Marine Biology Letters, 1, 355365.Google Scholar
Morse, M. P., Meyhöfer, E. & Robinson, W. E., 1985. Accumulation of 109cadmium in extracellular granules in the kidney of the bivalve mollusc Mercenaria mercenaria (L.). Marine Environmental Research, 17, 172175.CrossRefGoogle Scholar
Noel-Lambot, F., Bouquegneau, J. M., Frankenne, F. & Disteche, A., 1978. Le rôle des métallothioneines dans le stockage des métaux lourds chez les animaux marins. Revue internationale d'océanographie médicate, 49, 1320.Google Scholar
Nolan, C. V. & Duke, E. J., 1983 a. Cadmium accumulation and toxicity in Mytilus edulis. Involvement of metallothioneins and heavy molecular weight protein. Aquatic Toxicology, 4, 153163.CrossRefGoogle Scholar
Nolan, C. V. & Duke, E. J., 1983 b. Cadmium binding proteins in Mytilus edulis. Relation to mode of administration and significance in tissue retention of cadmium. Chemosphere, 12, 6574.CrossRefGoogle Scholar
Ray, S., 1984. Bioaccumulation of cadmium in marine organisms. Experientia, 40, 1423.CrossRefGoogle Scholar
Ray, S., McLeese, D. W., Waiwood, B. A. & Peczzack, D., 1980. The disposition of cadmium and zinc in Pandalus montagui. Archives of Environmental Contamination and Toxicology, 9, 675681.CrossRefGoogle ScholarPubMed
Robinson, W. E. & Ryan, D. K., 1986. Metal interactions within the kidney, gill, and digestive gland of the hard clam, Mercenaria mercenaria, following laboratory exposure to cadmium. Archives of Environmental Contamination and Toxicology, 15, 2330.CrossRefGoogle ScholarPubMed
Scholz, N., 1980. Accumulation, loss and molecular distribution of cadmium in Mytilus edulis. Helgoländer wissenschaftliche Meeresuntersuchungen, 33, 6878.CrossRefGoogle Scholar
Scott, B. J. & Bradwell, A. R., 1983. Identification of the serum binding proteins for iron, zinc, cadmium, nickel, calcium. Clinical Chemistry, 29, 629633.CrossRefGoogle Scholar
Taylor, D., 1983. The significance of the accumulation of cadmium by aquatic organisms. Ecotoxicology and Environmental Safety, 1, 3342.CrossRefGoogle Scholar
Vasak, M. & Kagi, J. H. R., 1983. Spectroscopic properties of metallothionein. In Metal Ions in Biological Systems, vol. 15 (ed. Sigel, H.), pp. 213273. New York: Dekker.Google Scholar
Zaroogian, G. E., 1979. Studies on the depuration of cadmium and copper by the American oyster, Crassostrea virginica. Bulletin of Environmental Contamination and Toxicology, 23, 117122.CrossRefGoogle ScholarPubMed