Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T13:22:59.591Z Has data issue: false hasContentIssue false

Biodiversity pattern of subtidal sponges (Porifera: Demospongiae) in the Penghu Archipelago (Pescadores), Taiwan

Published online by Cambridge University Press:  05 March 2015

Yusheng M. Huang*
Affiliation:
Department of Marine Sports and Recreation, National Penghu University of Science and Technology, Magong City, Taiwan Department of Aquaculture, National Penghu University of Science and Technology, Magong City, Taiwan Naturalis Biodiversity Center, Leiden, the Netherlands
Nicole J. de Voogd
Affiliation:
Naturalis Biodiversity Center, Leiden, the Netherlands
Daniel F. R. Cleary
Affiliation:
Departemento de Biologia, University of Aveiro, Aveiro, Portugal
Tsung-Hsuan Li
Affiliation:
Department of Oceanography, National Sun Yat-Sen University, Kaohsiung, Taiwan
Hin-Kiu Mok
Affiliation:
Department of Oceanography, National Sun Yat-Sen University, Kaohsiung, Taiwan
Jinn-Pyng Ueng
Affiliation:
Department of Aquaculture, National Penghu University of Science and Technology, Magong City, Taiwan
*
Correspondence should be addressed to:Y.M. Huang, Department of Marine Sports and Recreation, National Penghu University of Science and Technology, Magong City, Taiwan email: [email protected]

Abstract

Sponge-related research in Taiwan has primarily focused on natural product exploration. This research has, however, been hampered by a lack of fundamental work on sponge taxonomy and ecology. In the present study, subtidal sponges were photo-recorded in situ and collected by scuba diving at a depth range of 2–20 m from 2009 to 2012 in 16 different sites surrounding the Penghu Archipelago, Taiwan. Sponge samples were identified to the lowest taxonomic level based on skeletal morphology and spicules. A total of 53 species belonging to 24 families and 10 orders were identified in this study. The number of sponge species per site ranged from 0 to 24. The most widely distributed sponge species was Callyspongia (Euplacella) cf. communis (Carter, 1881) followed by Haliclona (Gellius) cymaeformis (Esper, 1794), and Aaptos suberitoides (Brøndsted, 1934). At one location, Chipeiyu, no sponges were observed. Non-metric multidimensional scaling (NMDS) ordination revealed relatively low similarity among most sampling sites. Large- and small-scale hydrological and habitat features are probably responsible for compositional variation of sponge assemblages among groups of sampling sites. Our richness analyses suggest that many more sponge species remain to be discovered in the Penghu Archipelago.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Becking, L.E., Cleary, D.F.R., de Voogd, N.J., Renema, W., de Beer, M., Van Soest, R.W.M. and Hoeksema, B.W. (2006) Beta diversity of tropical marine benthic assemblages in the Spermonde Archipelago, Indonesia. Marine Ecology 27, 7688.CrossRefGoogle Scholar
Bell, J.J. and Barnes, D.K.A. (2000) A sponge diversity centre within a marine ‘island’. Hydrobiologia 440, 5564.CrossRefGoogle Scholar
Bell, J.J. and Smith, D. (2004) Ecology of sponges (Porifera) in the Wakatobi region, south-eastern Sulawesi, Indonesia: richness and abundance. Journal of the Marine Biology Association of the United Kingdom 84, 111.CrossRefGoogle Scholar
Brøndsted, H.V. (1929) Neue Schwämme aus Amoy an der Formosa-Strasse. Zoologischer Anzeiger 81, 224229.Google Scholar
Chan, B.K.K. and Lee, P.-F. (2012) Biogeography of intertidal barnacles in different marine ecosystems of Taiwan – potential indicators of climate change? In Stevens, L. (ed.) Global Advances in Biogeography. Rijeka: InTech. pp. 119136. Available from http://www.intechopen.com/books/global-advances-in-biogeography/biogeography-of-intertidal-barnacles-in-different-marine-systems-of-taiwan-potential-indicators-for-Google Scholar
Chen, C.A. and Shashank, K. (2009) Taiwan as a connective stepping-stone in the Kuroshio Triangle and the conservation of coral ecosystems under the impacts of climate change. Kuroshio Science 3, 1522.Google Scholar
Chen, C.-Y. (2000) Studies on bioactive constituents from selected Taiwanese marine sponges. PhD dissertation. National Sun Yat-Sen University, Kaohsiung, Taiwan, 174 pp.Google Scholar
Chen, Y.-G. and Liu, T.-K. (1996) Sea level changes in the last several thousand years, Penghu Islands, Taiwan Strait. Quaternary Research 45, 254262.CrossRefGoogle Scholar
Chen, Y.-H. (1988) Morphology of budding and adult Cinachyra australiensis (Carter, 1886). M.S. Master's thesis. National Sun Yat-Sen University, Kaohsiung, Taiwan, 42 pp.Google Scholar
Chen, Y.-H., Chen, C.-P. and Chang, K.-H. (1997) Budding cycle and bud morphology of the globe-shaped sponge Cinachyra australiensis. Zoological Science 36, 194200.Google Scholar
Chen, Y.-S. and Hsu, C.-Y. (2006) Ecological considerations of cage aquaculture in Taiwan. Journal of the Fisheries Society of Taiwan 33, 139146.Google Scholar
Chung, I.-F., Huang, Y.-M., Lee, T.-H. and Liu, L.-L. (2010) Reproduction of the bath sponge Spongia ceylonensis (Dictyoceratida: Spongiidae) from Penghu, Taiwan. Zoological Studies 49, 601607.Google Scholar
Clarke, K.R. and Warwick, R.M. (2001a) Change in marine communities: an approach to statistical analysis and interpretation. 2nd edition. Plymouth: PRIMER-E.Google Scholar
Clarke, K.R. and Warwick, R.M. (2001b) A further biodiversity index applicable to species lists: variation in taxonomic distinctness. Marine Ecology Progress Series 216, 265278.CrossRefGoogle Scholar
Cleary, D.F.R. and De Voogd, N.J. (2007) Environmental associations of sponges in the Spermonde Archipelago, Indonesia. Journal of the Marine Biology Association of the United Kingdom 87, 16691676.CrossRefGoogle Scholar
Colwell, R.K. (2013) EstimateS: statistical estimation of species richness and shared species from samples. Ver. 9.1 for Mac OS. Available at http://viceroy.eeb.uconn.edu/EstimateS.Google Scholar
de Voogd, N.J. (2012) On sand-bearing myxillid sponges, with a description of Psammochela tutiae sp. nov. (Poecilosclerida, Myxillina) from the northern Moluccas, Indonesia. Zootaxa 3155, 2128.CrossRefGoogle Scholar
de Voogd, N.J., Becking, L.E., Hoeksema, B.W., Noor, A. and Van Soest, R.W.M. (2004) Sponge interactions with spatial competitors in the Spermonde Archipelago. Bollettino dei Musei e Degli Istituti Biologici dell'Università di Genova 68, 253261.Google Scholar
de Voogd, N.J. and Cleary, D.F.R. (2008) An analysis of sponge diversity and distribution at three taxonomic levels in the Thousand Islands/Jakarta Bay reef complex, West-Java, Indonesia. Marine Ecology 29, 205215.CrossRefGoogle Scholar
Diaz, M.C. and Rützler, K. (2001) Sponges: an essential component of Caribbean coral reefs. Bulletin of Marine Science 69, 535546.Google Scholar
Dobretsov, S., Dahms, H.-U. and Qian, P.-Y. (2005a) Antibacterial and anti-diatom activity of Hong Kong sponges. Aquatic Microbial Ecology 38, 191201.CrossRefGoogle Scholar
Dobretsov, S., Dahms, H.-U., Tsoi, M.Y. and Qian, P.-Y. (2005b) Chemical control of epibiosis by Hong Kong sponges: the effect of sponge extracts on micro- and macrofouling communities. Marine Ecology Progress Series 297, 119129.CrossRefGoogle Scholar
Duckworth, A.R. and Peterson, B.J. (2012) Effects of seawater temperature and pH on the boring rates of the sponge Cliona celata in scallop shells. Marine Biology 160, 2735.CrossRefGoogle Scholar
Duckworth, A.R., West, L., Vansach, T., Stubler, A. and Hardt, M. (2012) Effects of water temperature and pH on growth and metabolite biosynthesis of coral reef sponges. Marine Ecology Progress Series 462, 6777.CrossRefGoogle Scholar
Fromont, J. (1999) Demosponges of the Houtman Abrolhos. Memoirs of the Queensland Museum 44, 175183.Google Scholar
Gray, J.E. (1868) Note on Theonella, a new genus of Coralloid sponges from Formosa. Proceedings of the Zoological Society of London 37, 565.Google Scholar
Hooper, J.N.A. and Van Soest, R.W.M. (2002) Systema Porifera: a guide to the classification of sponges. 1st edition. New York, NY: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
Hoshino, T. (1980) A guide to identification of principal fouling organism. (4) Sponges (Calcareous sponges and Demosponges). Marine Fouling 2, 5358 [in Japanese].CrossRefGoogle Scholar
Hsieh, H.J., Hsien, Y.-L., Tsai, W.-S., Su, W.-C., Jeng, M.-S. and Chen, C.A. (2008) Tropical fishes killed by the cold. Coral Reefs 27, 599.CrossRefGoogle Scholar
Hu, J., Kawamura, H., Li, C., Hong, H. and Jiang, Y. (2010) Review on current and seawater volume transport through the Taiwan Strait. Journal of Oceanogrphy 66, 591610.CrossRefGoogle Scholar
Huang, H.Z. (1996) The influence of environmental factors on the filtration rate of sponge, Cinachyra australiensis. M.S. Master's thesis. National Sun Yat-Sen University, Kaohsiung, Taiwan.Google Scholar
Huang, J.P., Mcclintock, J.B., Amsler, C.D. and Huang, Y.M. (2008) Mesofauna associated with the marine sponge Amphimedon viridis. Do its physical or chemical attributes provide a prospective refuge from fish predation? Journal of Experimental Marine Biology and Ecology 362, 95100.CrossRefGoogle Scholar
Huang, Y.-C.A., Hsieh, H.J., Huang, S.-C., Meng, P.-J., Chen, Y.-S., Keshavmurthy, S., Nozawa, Y. and Chen, C.A. (2011) Nutrient enrichment caused by marine cage culture and its influence on subtropical coral communities in turbid waters. Marine Ecology Progress Series 423, 8393.CrossRefGoogle Scholar
Huang, Y.L. (2002) Diversity and antibacterial activity of heterotrophic bacteria associated with sponges. M.S. Master's thesis. National Taiwan University, Taipei, Taiwan, 80 pp.Google Scholar
Jan, S., Tseng, Y.-H. and Dietrich, D.E. (2010) Sources of water in the Taiwan Strait. Journal of Oceanography 66, 211221.CrossRefGoogle Scholar
Jan, S., Wang, J., Chern, C.-S. and Chao, S.-Y. (2002) Seasonal variation of the circulation in the Taiwan Strait. Journal of Marine Systems 35, 249268.CrossRefGoogle Scholar
Jhou, G.-R. (2004) Antitumor constituents from Formosan marine sponge Negombata corticata. M.S. Master's thesis. National Sun Yat-Sen University, Kaohsiung, Taiwan, 146 pp.Google Scholar
Kang, D.W., Lee, K.J. and Sim, C.J. (2013) Two new marine sponges of the genus Haliclona (Haplosclerida: Chalinidae) from Korea. Animal Systematics, Evolution and Diversity 29, 5155.CrossRefGoogle Scholar
Kelmo, F., Bell, J.J. and Attrill, M.J. (2013) Tolerance of sponge assemblages to temperature anomalies: resilience and proliferation of sponges following the 1997–8 El Nino Southern Oscillation. PLoS ONE 8, e76441. doi: 76410.71371/journal.pone.0076441.CrossRefGoogle ScholarPubMed
Khodakovskaya, A.V. (2005) Fauna of sponges (Porifera) of Peter the Great Bay, Sea of Japan. Russian Journal of Marine Biology 31, 209214.CrossRefGoogle Scholar
Lazoski, C., Solé-Cava, A.M., Boury-Esnault, N., Klautau, M. and Russo, C.A.M. (2001) Cryptic speciation in a high gene flow scenario in the oviparous marine sponge Chondrosia reniformis. Marine Biology 139, 421429.Google Scholar
Lesser, M.P. (2006) Benthic-pelagic coupling on coral reefs: feeding and growth of Caribbean sponges. Journal of Experimental Marine Biology and Ecology 328, 277288.CrossRefGoogle Scholar
Lesser, M.P., Slattery, M. and Leichter, J.J. (2009) Ecology of mesophotic coral reefs. Journal of Experimental Marine Biology and Ecology 375, 18.CrossRefGoogle Scholar
Li, T.-H. (2013) Preliminary survey on the biodiversity of marine sponges (Porifera: Demospongiae) in the southern water off the Penghu Archipelago. M.S. Master's thesis. National Sun Yat-sen University, Kaohsiung, Taiwan, 152 pp.Google Scholar
Liao, C.-C. (2003) I. Studies on the bioactive constituents and acylated derivatives of Taiwanese Smenospongia sp. II. Studies on the lignans of Taiwanese Kadsura philippinensis Elmer. M.S. Master's thesis, National Sun Yat-Sen University, Kaohsiung, Taiwan.Google Scholar
Liao, M.-H., Tang, S.L., Hsu, C.M., Wen, K.C., Wu, H., Chen, W.M., Wang, J.T., Meng, P.J., Twan, W.H., Dai, C.F., Soong, K. and Chen, C.A. (2007) The “black disease” of reef-building corals at Green Island, Taiwan – outbreak of a cyanobacteriosponge, Terpios hoshinota (Suberitidae; Hadromerida). Zoological Studies 46, 520.Google Scholar
Lim, S.-C., De Voogd, N.J. and Tan, K.-S. (2009) Fouling sponges (Porifera) on navigation buoys from Singapore waters. Raffles Bulletin of Zoology 22, 4158.Google Scholar
Lim, S.-C., De Voogd, N.J. and Tan, K.-S. (2012) Biodiversity of shallow-water sponges (Porifera) in Singapore and description of a new species of Forcepia (Poecilosclerida: Coelosphaeridae). Contributions to Zoology 81, 5571.CrossRefGoogle Scholar
Lin, S.L. (1995) Antitumor constituents from Formosan marine sponge Strongylophora durissima. M.S. Master's thesis. National Sun Yat-Sen University, Kaohsiung, Taiwan, 84 pp.Google Scholar
Lo, K.-L. (1999) Antitumor constituents from Formosan marine sponge Xestospongia sp. M.S. Master's thesis. National Sun Yat-Sen University, Kaohsiung, Taiwan, 50 pp.Google Scholar
Lu, D.-K. (2003) Fluorescence in situ hybridization of symbiotic chemoautotrophic sulfur-oxidizing bacteria of the sponge, Cinachyra australiensis. M.S. Master's thesis. National Sun Yat-Sen University, Kaohsiung, Taiwan, 133 pp.Google Scholar
Maldonado, M. and Young, C.M. (1998) Limits on the bathymetric distribution of keratose sponges: a field test in deep water. Marine Ecology Progress Series 174, 123139.CrossRefGoogle Scholar
Massaro, A. (2009) Selective filtration in the tropical marine sponge Rhopaloeides odorabile: impacts of elevated seawater temperature on feeding behavior. Independent Study Project (ISP) Collection. Paper 774. http://digitalcollections.sit.edu/isp_collection/774.Google Scholar
Mcclintock, J.B., Amsler, C.D., Baker, B.J. and Van Soest, R.W.M. (2005) Ecology of Antarctic marine sponges: an overview. Integrative and Comparative Biology 45, 359368.CrossRefGoogle ScholarPubMed
Mccune, B. and Grace, J.B. (2002) Analysis of ecological communities. Gleneden Beach, Oregon, USA: MjM Software Design.Google Scholar
Munro, C. (2005) Diving systems. In Eleftheriou, A. and Mcintyre, A. (eds) Methods for the study of marine benthos. 3rd edition. Oxford: Blackwell Science, pp. 112159.CrossRefGoogle Scholar
Olson, J.B. and Kellogg, C.A. (2010) Microbial ecology of corals, sponges, and algae in mesophotic coral environments. FEMS Microbiology Ecology 73, 1730.CrossRefGoogle ScholarPubMed
Pawlik, J.R., Chanas, B., Toonen, T.J. and Fenical, W. (1995) Defenses of Caribbean sponges against predatory reef fish. I. Chemical deterrency. Marine Ecology Progress Series 127, 183194.CrossRefGoogle Scholar
Pile, A.J., Grant, A., Hinde, R. and Borowitzka, M.A. (2003) Heterotrophy on ultraplankton communities is an important source of nitrogen for a sponge-rhodophyte symbiosis. Journal of Experimental Biology 206, 45334538.CrossRefGoogle ScholarPubMed
Qiu, Y., Chen, C.-T.A., Guo, X. and Jing, C. (2011) Currents in the Taiwan Strait as observed by surface drifters. Journal of Oceanography 67, 395404.CrossRefGoogle Scholar
Roberts, D.E., Davis, A.R. and Cummins, S.P. (2006) Experimental manipulation of shade, silt, nutrients and salinity on the temperate reef sponge Cymbastela concentrica. Marine Ecology Progress Series 143, 143154.CrossRefGoogle Scholar
Shao, K.-T., Peng, C.-I. and Wu, W.J. (2008) 2008 Taiwan species diversity II. Species checklist. Taipei: Forestry Bureau, Council of Agriculture, Executive Yuan, Taiwan.Google Scholar
Shih, H.-T. (2012) Distribution of fiddler crabs in East Asia, with a note on the effect of the Kuroshio Current. Kuroshio Science 6, 8389.Google Scholar
Shim, E.J. and Sim, C.J. (2013) Two marine sponges of the Family Ancorinidae (Demospongiae: Astrophorida) from Korea. Animal Systematics, Evolution and Diversity 29, 3135.CrossRefGoogle Scholar
Su, J.-H., Tseng, S.-W., Lu, M.-C., Liu, L.-L., Chou, Y. and Sung, P.-J. (2011) Cytotoxic C21 and C22 terpenoid-derived metabolites from the sponge Ircinia sp. Journal of Natural Products 74, 20052009.CrossRefGoogle ScholarPubMed
Swierts, T., Peijnenburg, K.T.C.A., Christiaan de Leeuw, C., Cleary, D.F.R., Hörnlein, C., Setiawan, E., Wörheide, G., Erpenbeck, D. and de Voogd, N.J. (2013) Lock, stock and two different barrels: comparing the genetic composition of morphotypes of the Indo-Pacific sponge Xestospongia testudinaria. PLoS ONE 8, e74396. doi:74310.71371/journal.pone.0074396.CrossRefGoogle ScholarPubMed
Tsukamoto, S., Yamanokuchi, R., Yoshitomi, M., Sato, K., Ikeda, T., Rotinsulu, H., Mangindaan, R.E.P., de Voogd, N.J., van Soest, R.W.M. and Yokosawa, H. (2010) Aaptamine, an alkaloid from the sponge Aaptos suberitoides, functions as a proteasome inhibitor. Bioorganic and Medicinal Chemistry Letters 20, 33413343.CrossRefGoogle ScholarPubMed
Tzeng, M.-T., Lan, K.-W. and Chan, J.-W. (2012) Interannual variability of wintertime sea surface temperatures in the eastern Taiwan Strait. Journal of Marine Science and Technology 20, 707712.Google Scholar
Van Soest, R.W.M. (1993) Distribution of sponges on the Mauritanian continental shelf. Hydrobiologia 258, 95106.CrossRefGoogle Scholar
Van Soest, R.W.M., Boury-Esnault, N., Hooper, J.N.A., Rützler, K., de Voogd, N.J., Alvarez de Glasby, B., Hajdu, E., Pisera, A.B., Manconi, R., Schoenberg, C., Janussen, D., Tabachnick, K.R., Klautau, M., Picton, B., Kelly, M., Vacelet, J., Dohrmann, M., Díaz, M.-C. and Cárdensa, P. (eds) (2015) World Porifera database, available at http://www.marinespecies.org/porifera.Google Scholar
Van Soest, R.W.M., Boury-Esnault, N., Vacelet, J., Dohrmann, M., Erpenbeck, D., De Voogd, N.J., Santodomingo, N., Vanhoorne, B., Kelly, M. and Hooper, J.N.A. (2012) global diversity of sponges (Porifera). PLoS ONE 7, e35105.CrossRefGoogle ScholarPubMed
Van Soest, R.W.M., Cleary, D.F.R., De Kluijver, M.J., Lavaleye, M.S.S., Maier, C. and Van Duyl, F.C. (2007) Sponge diversity and community composition in Irish bathyal coral reefs. Contributions to Zoology 76, 121142.CrossRefGoogle Scholar
Wang, J.-T., Hirose, E., Hsu, C.-M., Chen, Y.-Y., Meng, P.-J. and Chen, C.A. (2012) A coral-killing sponge, Terpios hoshinota, releases larvae harboring cyanobacterial symbionts: an implicaiton of dispersal. Zoological Studies 51, 314320.Google Scholar
Wang, Y.-H. (2012) Habitats and environmental investigation of the Penghu 4-South Islands. Marine National Park Headquarters, pp. 264 [in Chinese with English abstract].Google Scholar
Webster, N.S., Cobb, R.E. and Negri, A.P. (2008) Temperature thresholds for bacterial symbiosis with a sponge. ISME Journal 2, 830842.CrossRefGoogle ScholarPubMed
Wulff, J.L. (2001) Assessing and monitoring coral reef sponges: why and how? Bulletin of Marine Science 69, 831846.Google Scholar
Wulff, J.L. (2006) Rapid diversity and abundance decline in a Caribbean coral reef sponge community. Biological Conservation 127, 167176.CrossRefGoogle Scholar
Xavier, J.R., Rachello-Dolmen, P.G., Parra-Velandia, F.J., Schönberg, C.H.L., Breeuwer, J.A.J. and Van Soest, R.W.M. (2010) Molecular evidence of cryptic speciation in the “cosmopolitan” excavating sponge Cliona celata (Porifera, Clionaidae). Molecular Phylogenetics and Evolution 56, 1320.CrossRefGoogle ScholarPubMed
Yahel, G., Whitney, F., Reiswig, H.M., Eerkes-Medrano, D.I. and Leys, S.P. (2007) In situ feeding and metabolism of glass sponges (Hexactinellida, Porifera) studied in a deep temperate fjord with a remotely operated submersible. Limnology and Oceanography 52, 428440.CrossRefGoogle Scholar
Zea, S. (1993) Patterns of coral and sponge abundance in stressed coral reefs at Santa Marta, Colombian Caribbean. In Van Soest, R.W.M., Van Kempen, T.M.G. and Braekman, J.-C. (eds) Proceedings of the 4th International Porifera Congress, Amsterdam, the Netherlands, 1993. Rotterdam: A. A. Balkema, pp. 257264.Google Scholar
Zea, S. (2002) Patterns of sponge (Porifera, Demospongiae) distribution in remote oceanic reef complexes of the southwestern Carribbean. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 25, 579592.Google Scholar