Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T22:23:25.451Z Has data issue: false hasContentIssue false

The Biochemical Composition of Euphausia Superba

Published online by Cambridge University Press:  11 May 2009

J. E. G. Raymont
Affiliation:
Department of Oceanography, The University of Southampton, England
R. T. Srinivasagam
Affiliation:
Department of Oceanography, The University of Southampton, England
J. K. B. Raymont
Affiliation:
Department of Oceanography, The University of Southampton, England

Extract

Proximate analyses of deep-frozen samples of Euphausia superba Dana obtained in December and January showed that protein was the major constituent, averaging just over 50% of the dry body weight. Lipid was much more variable; extreme limits of variation were from 6 to 33% dry weight, though the lipid content during January was distinctly higher than in December (means 27 and 13% dry weight respectively). This increase probably reflects a more intensive grazing by krill during the Antarctic summer. Increased lipid appears to be associated with some reduction in water content and in ash. Carbohydrate is low, the mean value for December being just under 5% dry body weight, but the content is slightly higher than that found for most zooplankton and may reflect the herbivorous habit of E. superba. The proximate biochemical composition of krill is similar to that of the boreal euphausiid, Meganyctiphanes norvegica.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Burkholder, P. K.Mandelli, E. F. & Centeno, P. 1967. Some chemical properties of Munida gregaria and Euphausia superba. J. agric. Fd Chem., Vol. 15, pp. 718–20.CrossRefGoogle Scholar
Dubois, M.Gilles, K. A.Hamilton, J. K.Rebers, P. A. & Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Analyt. Chem., Vol. 28, pp. 350–6.CrossRefGoogle Scholar
Folch, J.Lees, M. & Sloane-Stanley, G. H. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. biol. Chem., Vol. 226, pp. 497509.CrossRefGoogle ScholarPubMed
Gulland, J. A. 1970. The development of the resources of the Antarctic Seas. In Antarctic Ecology, ed. M. W. Holdgate, Vol. 1, pp. 217–23.Google Scholar
Kryuchkova, M. I. & Makarov, O. E. 1969. Technochemical characteristics of Krill. Trudy uses. nauchno-issled. Inst. morsk. ryb. Khoz. Okeanogr., Vol. 66, pp. 295–8. [Translation RTS 5594, Nat. Lend. Lib. Sci. Tech.]Google Scholar
Littlepage, J. L. 1964. Seasonal variation in lipid content of two antarctic marine Crustacea. Actual, scient. ind., 1312, pp. 463–70.Google Scholar
Mackintosh, N. A. 1970. Whales and krill in the twentieth century. In Antarctic Ecology, ed. M. W. Holdgate, Vol. 1, pp. 195212.Google Scholar
Marr, J. 1962. The natural history and geography of the Antarctic krill (Euphausia superba Dana). Discovery Rep., Vol. 32, pp. 33464.Google Scholar
Mauchline, J. & Fisher, L. R. 1969. The biology of euphausiids. Adv. mar. Biol., Vol. 7, pp. 1454.Google Scholar
Moiseev, P. A. 1970. Some aspects of the commercial use of krillresources of the Antarctic Seas. In Antarctic Ecology, ed. M. W. Holdgate, Vol. 1, pp. 213–16.Google Scholar
Nakai, Z. 1955. The chemical composition, volume, weight and size of the important marine plankton. Spec. Publs Tokai Fish. Res. Lab., Vol. 5, pp. 1224.Google Scholar
Nemoto, T. 1968. Chlorophyll pigments in the stomach of euphausiids. J. oceanogr. Soc. Japan, Vol. 24, pp. 253–60.CrossRefGoogle Scholar
Raymont, J.E. G.Austin, J. & Linford, E. 1964. Biochemical studies on marine zooplankton. I. The biochemical composition of Neomysis integer. J. Cons. perm. int. Explor. Mer, Vol. 28, pp. 354–63.CrossRefGoogle Scholar
Raymont, J. E. G.Austin, J. & Linford, E. 1966. Biochemical studies on marine zooplankton. III. Seasonal variation in the biochemical composition of Neomysis integer. In Some contemporary studies in marinescience, ed. H. Barnes, pp. 597605. London: Allen & Unwin.Google Scholar
Raymont, J. E. G.Austin, J. & Linford, E. 1967. Biochemical composition of certain oceanic zooplanktonic decapods. Deep-Sea Res., Vol. 14, pp. 113–15.Google Scholar
Raymont, J. E. G. & Linford, E. 1966. A note on the biochemical composition of some Mediterranean zooplankton. Int. Revue ges. Hydrobiol., Bd. 51, pp. 485–8.CrossRefGoogle Scholar
Raymont, J. E. G.Srinivasagam, R. T. & Raymont, J. K. B. 1969a. Biochemical studies on marine zooplankton. VI. Investigations on Meganyctiphanes norvegica (M. Sars). Deep-Sea Res., Vol. 16, pp. 141–56.Google Scholar
Raymont, J. E. G.Srinivasagam, R. T. & Raymont, J. K. B. 1969b. Biochemical studies on marine zooplankton. VII. Observations on certain deep sea zooplankton. Int. Revue ges. Hydrobiol., Bd. 54, pp. 357–65.CrossRefGoogle Scholar
Sidhu, G. S.Montgomery, W. A.Holloway, G. L.Johnson, A. R. & Walker, D. M. 1970. Biochemical composition and nutritive value of krill (Euphausia superba Dana). J. Sci. Fd Agric, Vol. 21, pp. 293–6.CrossRefGoogle ScholarPubMed
Suyama, M.Nakajima, K. & Nonaka, J. 1965. Studies on the protein and non-protein nitrogenous constituents of Euphausia. Bull. jap. Soc. Scient. Fish., Vol. 31, pp. 302–6.CrossRefGoogle Scholar
Vinogradova, Z. A. 1960. Study of the biochemical composition of Antarctic krill {Euphausia superba Dana). Dokl. Akad. Nauk SSSR, Vol. 133, pp. 680682. [N.L.L. Translation.]Google Scholar