Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-23T20:52:23.207Z Has data issue: false hasContentIssue false

Bacterial Symbionts in Pogonophora

Published online by Cambridge University Press:  11 May 2009

Eve C. Southward
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth, PLi 2PB

Extract

Prokaryote organisms, with characteristics of Gram-negative bacteria, occur intracellularly in Pogonophora, as described here for seven small species. The tissue containing the bacteria lies between the two longitudinal blood vessels in the posterior part of the trunk and has a special blood supply. This tissue is probably homologous with the so-called trophosome tissue of the much larger vestimentiferan pogonophores, which also contains bacteria, and the term can be applied to all pogonophores. The presence of such bacteria-containing trophosome tissue may be a characteristic of the phylum. In both large and small species examined the bacteria appear to be chemoautotrophs and probably assist the nutrition and/or metabolism of their hosts. It is not yet certain if the bacterium-containing cells do originate from mesoderm or endoderm, but, if the latter, then the trophosome represents the remains of the missing gut. The trophosome tissue situated internally, and transfer of bacteria must take place early in the life history, in the egg or embryo.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bakke, T.J 1977. Development of Siboglinum fiordicum Webb (Pogonophora) after metamorphosis. Sarsia, 63, 6573.CrossRefGoogle Scholar
Buchanan, R. E. & Gibbons, N. E. (eds.), 1974. Bergey's Manual of Determinative Bacteriology, 8th ed. Baltimore: Williams & Wilkins.Google Scholar
Carpenter, E. J. & Culliney, J. L. 1975. Nitrogen fixation in marine shipworms. Science, New York, 187, 551552.CrossRefGoogle ScholarPubMed
Cavanaugh, C. M. 1980. Symbiosis of chemoautotrophic bacteria and marine invertebrates. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass. 159, 457.Google Scholar
Cavanaugh, C. M.Gardiner, S. L.Jonesm, L.Jannasch, H. W. & Waterbury, J. B. 1981. Prokaryotic cells in the hydrothermal vent tube wormRiftia pachyptila Jones: possible chemoautotrophic symbionts. Science, New York, 213, 340342.CrossRefGoogle ScholarPubMed
Cheng, K. J.Irvin, R. T. & Costerton, J. W. 1981. Autochthonous and pathogenic colonization of animal tissues by bacteria. Canadian Journal of Microbiology, 27, 461490.CrossRefGoogle ScholarPubMed
Claus, G. W.Roth, L. E. 1964. Fine structure of the Gram-negative bacterium Acetobacter suboxydans. Journal of Cell Biology, 20, 217233.CrossRefGoogle ScholarPubMed
Corliss, J. B.Dymond, J.Gordon, L. I.Edmond, J. M.Von Herzen, R. P.Ballard, R. D.Green, K.Williams, D.Bainbridgf, A.Crane, K. & Van Andel, T. H. 1979. Submarine thermal springs on the Galapagos Rift. Science, New York 203, 10731083.CrossRefGoogle ScholarPubMed
Davies, S. L. & Whitteneury, R. 1970.Fine structure of methaneand other hydrocarbonutilizing bacteria. Journal of General Microbiology, 61, 227232.CrossRefGoogle Scholar
Dmitrieva, N. A. 1971. Types of extra-intestinal nutrition in Pogonophora. Zoologicheskii zhurnal, 50, 18881892. [In Russian.]Google Scholar
Felbeck, H. 1981. Chemoautotrophicsp potential of the hydrothermal vent tube worm Riftia pachyptila Jones (Vestimentifera). Science, New York, 213, 336338.CrossRefGoogle ScholarPubMed
Felbeck, H.Childress, J. J. & Somero, G. N. 1981. Calvin-Benson cycle and sulphideoxidation enzymes in animals from sulphide-rich habitats. Nature, London, 293, 291293.CrossRefGoogle Scholar
Guerinot, M. L.Patriquin, D. G. 1981. The association of N2-fixing bacteria with sea urchins. Marine Biology 62, 197207.CrossRefGoogle Scholar
Gupta, B. L.Little, C 1975. Ultrastructure, phylogeny and Pogonophora. Zeitschrift fur zoologische Systematik und Evolutionsforschung, Sonderheft 1975, 4563.Google Scholar
Ivanov, A. V. 1955. External digestion in Pogonophora. Systematic Zoology, 4, 174176.Google Scholar
Ivanov, A. V. 1963. Pogonophora. xvi, 479 pp. AcademicPress.CrossRefGoogle Scholar
Ivanov, A. V. 1975. Embryonalentwicklung der Pogonophora und ihre systematische Stellung. Zeitschrift fiir zoologische Systematik und Evolutionsforschung, Sonderheft 1975, 1044.Google Scholar
Jagersten, G. 1957. On the larva of Siboglinum, with some remarks on the nutrition problem of the Pogonophora. Zoologiska bidrag frdn Uppsala, 32, 6779.Google Scholar
Jensen, H. & Myklebust, R. 1975. Ultrastructure of muscle cellsin Siboglinum fiordicum (Pogonophora). Cell and Tissue Research, 163, 185197.CrossRefGoogle Scholar
Jones, M. L. 1980. Riftia pachyptila, new genus, new species, the vestimentiferan worm from the Galapagos Rift geothermal vents (Pogonophora). Proceedings of the Biological Society of Washington, 93, 12951313.Google Scholar
Jones, M. L. 1981. Riftia pachyptila Jones: observations on the vestimentiferan worm from the Galapagos Rift. Science, New York, 213, 333336.Google ScholarPubMed
Land, J.Van Der & Norrevang, A. 1975. The systematic position of Lamellibrachia (Annelida, Vestimentifera). Zeitschrift fiir zoologische Systematik und Evoluntionsforschung, Sonderheft 1975, 86101.Google Scholar
Land, J.Van Der, & Norrevang, A. 1977. Structure and relationships of Lamellibrachia (Annelida, Vestimentifera). Biologiske Skrifter, 21(3), 102 pp.Google Scholar
Mason, A. Z. & Nott, J. A. 1981. The role of biomineralized granules in the regulation and detoxification of metals in gastropods with special reference to the marine prosobranch Littorina littorea. Aquatic Toxicology, 1, 239256.CrossRefGoogle Scholar
Norrevang, A. 1970. On the embryology of Siboglinum and its implications for the systematic position of the Pogonophora. Sarsia, 42, 716.CrossRefGoogle Scholar
Rau, G. H. 1981. Hydrothermal vent clam and tube worm 13C/12C: furtherevidence of nonphotosynthetic food source. Science, New York, 213, 338340.CrossRefGoogle Scholar
Schwemmler, W. 1980. Principles of endocytobiosis: structure, function and information. In Endocytobiology-Endosymbiosis and Cell Biology (ed. Schwemmler, W. and Schenk, H. E. A.), pp. 565583. Berlin: de Gruyter.CrossRefGoogle Scholar
Shively, J. M.Ball, F.Brown, D. H.Saunders, R. E. 1973. Functional organelles in prokaryotes: polyhedral inclusions (carboxysomes) of Thiobacillus neapolitanus. Science, New York, 182, 584586.CrossRefGoogle ScholarPubMed
Simkiss, K. 1981. Cellular discrimination processes in metal accumulating cells. Journal of Experimental Biology, 94, 317327.CrossRefGoogle Scholar
Southward, A. J. 1975. On the evolutionary significance of the mode of feeding of Pogonophora. Zeitschrift fiir zoologische Systematik und Evolutionsforschung, Sonderheft 1975, 7785.Google Scholar
Southward, A. J. & Southward, E. C 1980. The significance of dissolved organic compounds in the nutrition of Siboglinum ekmani and other small species of Pogonophora. Journal of the Marine Biological Association of the United Kingdom 60, 10051034.CrossRefGoogle Scholar
Southward, A. J. & Southward, E. C 1981. Dissolved organic matter and the nutrition of Pogonophora: a reassessment based on recent studies of their morphology and physiology. Kieler Meeresforschungen, Sonderheft 5, 445453.Google Scholar
Southward, A. J.Southward, E. CBrattegard, T. & Bakke, T. 1979. Further experiments on the value of dissolved organic matter as food for Siboglinum fiordicum (Pogonophora). Journal of the Marine Biological Association of the United Kingdom, 59, 133148.CrossRefGoogle Scholar
Southward, A. J.Southward, E. CDando, P. R.Rau, G. H.Felbeck, H.Flugel, H. J. 1981. Bacterial symbionts and low 13C/12C ratios in tissues of Pogonophora indicate unusual nutrition and metabolism. Nature, London, 293, 616620.CrossRefGoogle Scholar
Southward, E. C 1972. On some Pogonophora from the Caribbean and the Gulf of Mexico. Bulletin of Marine Science, 22, 739776.Google Scholar
Southward, E. C, 1975. A study of the structure of the opisthosoma of Siboglinum fiordicum. Zeitschrift fiir zoologische Systematik und Evolutionsforschung, Sonderheft 1975, 6476.Google Scholar
Southward, E. C. & Southward, A. J. 1966. A preliminary account of the general and enzyme histochemistry of Siboglinum atlanticum and other Pogonophora. Journal of the Marine Biological Association of the United Kingdom, 46, 579616.Google Scholar
Van Caeseele, L.Lees, H. 1969. The ultrastructure of autotrophically and heterotrophically grown Thiobacillus novellus. Canadian Journal of Microbiology, 15, 651–654.CrossRefGoogle ScholarPubMed
Vollker, H.Schweisfurth, R. & Hirsch, P. 1977. Morphology and ultrastructure oiCrenothrix poly'spota. Journal of Bacteriology, 131, 306313.CrossRefGoogle Scholar
Watson, S. W. & Remsen, C. C, 1970. Cell envelope of Nitrosocystis oceanus. Journal of Ultrastructure Research, 33, 148160.CrossRefGoogle ScholarPubMed
Webb, M. 1969. Lamellibrachia barhami, gen.nov., sp.nov., (Pogonophora), from the northeast Pacific. Bulletin of Marine Science, 19, 1847.Google Scholar