Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-18T02:22:04.263Z Has data issue: false hasContentIssue false

Aerobic and anaerobic enzymatic activities of Calyptogena gallardoi (Vesicomyidae): a clam associated with methane cold seeps off Chile

Published online by Cambridge University Press:  25 July 2008

R.R. González*
Affiliation:
Centro de Investigación Oceanográfica en el Pacífico Sur-Oriental (COPAS), Universidad de Concepción, Casilla 160C, Concepción, Chile Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160C, Concepción, Chile
R.A. Quiñones
Affiliation:
Centro de Investigación Oceanográfica en el Pacífico Sur-Oriental (COPAS), Universidad de Concepción, Casilla 160C, Concepción, Chile Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160C, Concepción, Chile
E. Quiroga
Affiliation:
Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Bilbao 449, Coyhaique, Chile
J. Sellanes
Affiliation:
Centro de Investigación Oceanográfica en el Pacífico Sur-Oriental (COPAS), Universidad de Concepción, Casilla 160C, Concepción, Chile Departamento de Biología Marina, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile
*
Correspondence should be addressed to: Centro de Investigación Oceanográfica en el Pacífico Sur-Oriental (COPAS) Universidad de Concepción Casilla 160C, Concepción, Chile email: [email protected]

Abstract

Calyptogena gallardoi is a recently described species of vesicomyid clam associated to the extensive gas-hydrate field reported for the Chilean margin along 35°S to 45°S. Enzymatic analysis in foot, gill and abductor muscle tissues of C. gallardoi collected in central-south Chile (~36°21′S 73°44′W), show high activities for malate dehydrogenase (MDH), strombine dehydrogenase (STRDH) and alanopine dehydrogenase (ALPDH) and a low activity of citrate synthase (CS) and ETS (electron transport system). Positive significant correlations (log–log scale) were found between enzymatic activities involved in anaerobic metabolism (MDH versus LDH and ALPDH versus STRDH), as well as between CS and opines dehydrogenases. The ratio MDH/LDH or any other opine dehydrogenase assayed was >> 1 in all tissues analysed. These results indicate that C. gallardoi is highly adapted to the harsh anaerobic conditions of marine chemosynthesis-based communities inhabiting a reduced environment.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arndt, C., Gaill, F. and Felbeck, H. (2001) Anaerobic sulfur metabolism in thiotrophic symbioses. Journal of Experimental Biology 204, 741750.CrossRefGoogle ScholarPubMed
Bergmeyer, H.U. (1983) Methods of enzymatic analysis. Volume 11, 3rd edn. Weinheim, Germany: Verlag Chemie.Google Scholar
Childress, J.J. and Somero, G.N. (1979) Depth-related enzymic activities in muscle, brain and heart of deep-living pelagic marine teleosts. Marine Biology 52, 273283.CrossRefGoogle Scholar
Dodds, J. (1996) Comparison of metabolic potentials of cold seeps clams (Genus Calyptogena) ocurring in varying sulfide environments. Hopkins Marine Station Student Paper, Stanford University. Final Papers Biology, no.175H, 13 pp.Google Scholar
Fanslow, D.L., Nalepa, T.F. and Johengen, T.H. (2001) Seasonal changes in the respiratory electron transport system (ETS) and respiration of the zebra mussel, Dreissena polymorpha in Saginaw Bay, Lake Huron. Hydrobiologia 448, 6170.CrossRefGoogle Scholar
Goffredi, S.K. and Barry, J.P. (2002) Species-specific variation in sulfide physiology between closely related Vesicomyid clams. Marine Ecology Progress Series 225, 227238.CrossRefGoogle Scholar
Grevemeyer, I., Diaz-Naveas, J., Ranero, C.R. and Villinger, H.W. (2003) Heat flow over the descending Nazca plate in central Chile, 32°S to 41°S: observations from ODP Leg 202 and the occurrence of natural gas hydrates. Earth and Planetary Science Letters 213, 285298.CrossRefGoogle Scholar
Hochachka, P.W. and Somero, G.N. (1984) Biochemical adaptation. Princeton: Princeton University Press, 537 pp.CrossRefGoogle Scholar
Jackson, D. (1968) Metabolic depression and O2 depletion in the diving turtle. Journal of Applied Physiology 24, 503509.CrossRefGoogle Scholar
Livingstone, D.R. (1983) Invertebrate and vertebrate pathway of anaerobic metabolism: evolutionary considerations. Journal of the Geological Society (London) 140, 2737.CrossRefGoogle Scholar
Livingstone, D.R. (1991) Origins and evolution of pathways of anaerobic metabolism in the animal kingdom. American Zoologist 31, 522534.CrossRefGoogle Scholar
Morales, E. (2003) Methane hydrates in the Chilean continental margin. Biotechnology Issues for Developing Countries, 6, 8084. Available online from: http://www.ejbiotechnology.info/content/vol6/issue2/issues/1/index.htmlGoogle Scholar
Packard, T.T. (1985) Measurement of electron transport activity of microplankton. In Jannasch, H. and Williams, PJLeB. (eds) Advances in aquatic microbiology. London: Academic Press, pp. 207261.Google Scholar
Schiedek, D. (1997) Marenzelleria viridis (Verril, 1873) (Polychaeta), a new benthic species within European costal waters. Some metabolic features. Journal of Experimental Marine Biology and Ecology 211, 85101.CrossRefGoogle Scholar
Schroff, G. and Schöttler, U. (1977) Anaerobic reduction of fumarate in the body wall musculature of Arenicola marina (Polychaeta). Journal of Comparative Physiology 116, 355–33.Google Scholar
Seibel, B.A., Thuesen, E.V. and Childress, J.J. (1998) Flight of the vampire: ontogenetic gait-transition in Vampyroteuthis infernalis (Cephalopoda: Vampyromorpha). Journal of Experimental Biology 201, 24132424.CrossRefGoogle ScholarPubMed
Sell, A.F. (2000) Life in the extreme environment at a hydrothermal vent: haemoglobin in a deep-sea copepod. Proceedings of the Royal Society of London B 267, 23232326.CrossRefGoogle Scholar
Sellanes, J. and Krylova, E. (2005) A new species of Calyptogena (Bivalvia: Vesicomyidae) from a recently discovered methane seepage area off Concepción Bay, Chile (36°S). Journal of the Marine Biological Association of the United Kingdom 85, 969976.CrossRefGoogle Scholar
Shapiro, A.Z. and Bobkova, A.N. (1975) The role of malate dehydrogenase in adaptation to hypoxia in invertebrates. Journal of Evolutionary Biochemistry and Physiology 11, 478479.Google ScholarPubMed
Steven, H. and Somero, G.N. (1983) Energy metabolism pathways of hydrothermal vent animals: adaptations to a food-rich and sulfide-rich deep-sea environment. Biological Bulletin. Marine Biological Laboratory, Woods Hole, 165, 167181.Google Scholar
Vetter, R.D., Lynn, E.A., Garza, M. and Costa, A.S. (1994) Depth zonation and metabolic adaptation in Dover sole Microstomus pacificus, and other deep-living flatfishes: factors that affect the sole. Marine Biology 120, 145159.CrossRefGoogle Scholar