Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-15T01:27:46.744Z Has data issue: false hasContentIssue false

Spatial–temporal variation of Achirus larvae (Actinopterygii: Achiridae) in mangrove, beach and reef habitats in north-eastern Brazil

Published online by Cambridge University Press:  20 January 2012

Elisabeth Cabral Silva-Falcão*
Affiliation:
Laboratório de Necton, Departamento de Oceanografia, Universidade Federal de Pernambuco, 50730-540, Avenida da Arquitetura – s/n, Cidade Universitária, Recife, PE, Brazil
William Severi
Affiliation:
Laboratório de Ictiologia, Departamento de Pesca e Aqüicultura, Universidade Federal Rural de Pernambuco, 52171-900 Rua Dom Manoel de Medeiros – s/n, Dois Irmãos, Recife, PE, Brazil
Maria Elisabeth De Araújo
Affiliation:
Laboratório de Necton, Departamento de Oceanografia, Universidade Federal de Pernambuco, 50730-540, Avenida da Arquitetura – s/n, Cidade Universitária, Recife, PE, Brazil
*
Correspondence should be addressed to: E.C. Silva-Falcão, Laboratório de Necton, Departamento de Oceanografia, Universidade Federal de Pernambuco, 50730-540, Avenida da Arquitetura – s/n, Cidade Universitária, Recife, PE, Brazil email: [email protected]

Abstract

The genus Achirus is made up of demersal fish that have a close relationship with the substrate and exhibit peculiar aspects during their larval stage. The aim of the present study was to determine whether the abundance of Achirus larvae differed among a set of habitats in the estuary of the Formoso River in the State of Pernambuco (north-eastern Brazil). Sampling was performed monthly between April 2009 and March 2010, and comprised horizontal hauls with plankton net during the day and night in mangrove, beach and reef habitats. Fish larvae were sorted, identified, measured and larval stage recorded. Density and body length values were used in a non-parametric analysis of variance for the determination of variations between seasons, habitats and diel periods. A total of 204 larvae were collected, with an average density of 2.1 larvae.100 m−3. Density was greater in the nocturnal samplings, with no differences found between habitats. The larvae occurred in the yolk-sac to post-flexion stage, with pre-flexion the most abundant stage (78%). Size segregation was observed. Larger larvae were captured at night and in the mangrove. The smallest larvae were caught on the reef, with length increasing toward the mangrove. The results indicate that Achirus larvae come from deeper regions near reefs, where spawning probably occurs, and perform ontogenetic migration towards the shallow waters of mangrove, where they settle.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Able, K.W., Fahay, M.P., Witting, D.A., McBride, R.S. and Hagan, S.M. (2006) Fish settlement in the ocean vs. estuary: comparison of pelagic larval and settled juvenile composition and abundance from southern New Jersey, U.S.A. Estuarine, Coastal and Shelf Science 66, 280290.Google Scholar
Aceves-Medina, G., Saldierna-Martínez, R., Hinojosa-Medina, A., Jiménez-Rosenberg, S.P.A., Hernández-Rivas, M.E. and Morales-Ávila, R. (2008) Vertical structure of larval fish assemblages during diel cycles in summer and winter in the southern part of Bahía de La Paz, México. Estuarine, Coastal and Shelf Science 76, 889901.Google Scholar
Ahlstrom, E.H., Amaoka, K., Hensley, D.A., Moser, H.G. and Sumida, B.Y. (1984) Pleuronectiformes development. In Moser, H., Richards, W., Cohen, D., Fahay, M., Kendall, A. and Richardson, S. (eds) Ontogeny and systematics of fishes. Lawrence, KS: American Society of Ichthyology and Herpetology, pp. 640670.Google Scholar
Araújo, M.E., Teixeira, J.M.C. and Oliveira, A.M.E. (2004) Peixes estuarinos marinhos do Nordeste brasileiro. Fortaleza: Edições UFC/UFPE.Google Scholar
Bailey, K.M. (1997) Structural dynamics and ecology of flatfish populations. Journal of Sea Research 37, 269280.Google Scholar
Bailey, K.M., Nakata, H. and Van der Veer, H.W. (2005) The planktonic stages of flatfishes: physical and biological interactions in transport processes. In Gibson, R. (ed.) Flatfishes: biology and exploitation. Oxford: Blackwell Science, pp. 94119.Google Scholar
Barletta, M. and Barletta-Bergan, A. (2009) Endogenous activity rhythms of larval fish assemblages in a mangrove fringed estuary in North Brazil. The Open Fish Science Journal 2, 1524.Google Scholar
Barletta-Bergan, A., Barletta, M. and Saint-Paul, U. (2002) Structure and seasonal dynamics of larval fish in the Caeté River Estuary in North Brazil. Estuarine, Coastal and Shelf Science 54, 193206.Google Scholar
Bonecker, A.C.T., Castro, M.S., Namiki, C.A.P., Bonecker, F.T. and Barros, F.B.A.G. (2007) Larval fish composition of a tropical estuary in northern Brazil (2°18′–2°47′S 044°20′–044°25′W) during the dry season. Pan-American Journal of Aquatic Sciences 2, 235241.Google Scholar
Boehlert, G.W. and Mundy, B.C. (1988) Roles of behavioral and physical factors in larval and juvenile fish recruitment to estuarine nursery areas. American Fisheries Society Symposium 3, 5167.Google Scholar
Burke, J.S., Tanaka, Y. and Seikai, T. (1995) Influence of light and salinity on behavior of larval Japanese flounder (Paralichthys olivaceus) and implications for inshore migration. Netherlands Journal of Sea Research 34, 5969.Google Scholar
Ferreira, B.P. and Cava, F. (2001) Ictiofauna marinha da APA Costa dos Corais: lista de espécies através de levantamento da pesca e observações subaquáticas. Boletim Técnico-Científico do CEPENE 9, 167180.Google Scholar
Ferreira, B.P., Maida, M. and Souza, A.E.T. (1995) Levantamento inicial das comunidades de peixes recifais da regiao de Tamandare—PE. Boletim Técnico-Científico do CEPENE 3, 213230.Google Scholar
Flores-Coto, C., Sánchez-Iturbe, A., Zavala-García, F. and López-García, D. (1992) Edad y crecimiento de larvas de Achirus lineatus, Etropus crossotus, Syacium gunteri y Symphurus civitatus en el sur del Golfo de México. Anales del Instituto de Ciencias del Mar y Limnología 19, 167173.Google Scholar
Florin, A. and Lavados, G. (2010) Feeding habits of juvenile flatfish in relation to habitat characteristics in the Baltic Sea. Estuarine, Coastal and Shelf Science 86, 607612.Google Scholar
Fuiman, L.A. (1997) What can flatfish ontogenies tell us about pelagic and benthic lifestyles? Journal of Sea Research 37, 257267.Google Scholar
Futch, C.R. (1970) Contributions to the ecology of larval and juvenile lined sole, Achirus lineatus, in Tampa Bay, Florida. Florida Department of Natural Resources, Marine Research Laboratory 17, 15.Google Scholar
Geffen, A.J., Van der Veer, H.W. and Nash, R.D.M. (2007) The cost of metamorphosis in flatfishes. Journal of Sea Research 58, 3545.Google Scholar
Gibson, R.N. (1997) Behaviour and the distribution of flatfishes. Journal of Sea Research 37, 241256.Google Scholar
Godefroid, R.S., Hofstaetter, M. and Spach, H.L. (1999) Larval fish in the surf zone of Pontal do Sul beach, Pontal do Paraná, Paraná, Brazil. Revista Brasileira de Zoologia 16, 10051011.Google Scholar
Kendall, A.W., Ahlstrom, E.H. and Moser, H.G. (1984) Early life history stages of fishes and their characters. In Moser, H., Richards, W., Cohen, D., Fahay, M., Kendall, A. and Richardson, S. (eds) Ontogeny and systematics of fishes. Lawrence, KS: American Society of Ichthyology and Herpetology, pp. 1122.Google Scholar
Lemke, J.L. and Ryer, C.H. (2006) Risk sensitivity in three juvenile (Age-0) flatfish species: does estuarine dependence promote risk-prone behavior? Journal of Experimental Marine Biology and Ecology 333, 172180.Google Scholar
Lira, L., Zapata, M.-C. and Fonseca, V.G. (1979) Aspectos da dinâmica do estuário do Rio Formoso, Pernambuco. Caderno Ômega 3, 133156.Google Scholar
Mafalda, P.O. Jr, Souza, C.S. and Velame, M.P.B. (2008) Fish larvae assemblage of a coastal area under influence of petrochemical activities, in Todos os Santos bay, Bahia, Brazil. Aquatic Ecosystem Health and Management 11, 457464.Google Scholar
Menezes, N.A., Buckup, P.A., Figueiredo, J.L. and Moura, R.L. (2003) Catálogo das espécies de peixes marinhos do Brasil. São Paulo: EDUSP.Google Scholar
Moles, A. and Norcross, B.L. (1995) Sediment preference in juvenile Pacific flatfishes. Netherlands Journal of Sea Research 34, 177182.Google Scholar
Munroe, T.A. (2002) Achiridae. In Carpenter, K.E. (ed.) The living marine resources of eastern Central Atlantic. Rome: FAO and American Society of Ichthyologists and Herpetologists, Special Publication No. 5, Volume 3, pp. 19251933.Google Scholar
Nascimento-Filho, G.A., Coelho-Junior, C., Correa, F.M., Longo, A.F.P., Gaspar, F.L. and Schwamborn, R. (2007) Desenvolvimento estrutural de bosque de mangue ao longo do gradiente de inundação do rio Arinquindá—baía de Tamandaré, Pernambuco. Boletim Técnico-Científico do CEPENE 15, 3137.Google Scholar
Nonaka, R.H., Matsuura, Y. and Suzuki, K. (2000) Seasonal variation in larval fish assemblages in relation to oceanographic conditions in the Abrolhos Bank region off eastern Brazil. Fishery Bulletin 98, 767784.Google Scholar
Ortíz-Galindo, J.L., Matus-Nivón, E., Ramírez-Sevilla, R. and González-Acosta, B. (1990) Embrión, larva y prejuvenil del sol mexicano Achirus mazatlanus (Pisces: Soleidae). Revista de Biologia Tropical 38, 195204.Google Scholar
Paiva, A.C.G., Lima, M.F.V., Souza, J.R.B. and Araújo, M.E. (2009) Spatial distribution of the estuarine ichthyofauna of the Rio Formoso (Pernambuco, Brazil), with emphasis on reef fish. Zoologia 26, 266278.Google Scholar
Pereira, P.H.C., Ferreira, B.P. and Rezende, S.M. (2010) Community structure of the ichthyofauna associated with seagrass beds (Halodule wrightii) in Formoso River estuary—Pernambuco, Brazil. Anais da Academia Brasileira de Ciências 82, 617628.Google Scholar
Ramos, R.T.C., Ramos, T.P.A. and Lopes, P.R.D. (2009) New species of Achirus (Pleuronectiformes: Achiridae) from Northeastern Brazil. Zootaxa 2113, 5562.Google Scholar
Reyier, E.A. and Shenker, J.M. (2007) Ichthyoplankton community structure in a shallow subtropical estuary of the Florida Atlantic coast. Bulletin of Marine Science 80, 267293.Google Scholar
Richards, W.J. (2006) Early stages of Atlantic fishes: an identification guide for western central North Atlantic. Boca Raton, FL: CRC Press.Google Scholar
Rijnsdorp, A.D., Berghahn, R., Miller, J.M. and Van Der Veer, H.W. (1995) Recruitment mechanisms in flatfish: what did we learn and where do we go? Netherlands Journal of Sea Research 34, 237242.Google Scholar
Sarpedonti, V., Anunciação, E.M.S. and Nahum, V.J.I. (2008) Ichthyoplankton variations in two mangrove creeks of the Curuçá estuary, Pará, Brazil. Ecotrópicos 21, 112.Google Scholar
Silva, M.H., Passavante, J.Z.O., Silva-Cunha, M.G.G., Nascimento-Vieira, D.A., Grego, C.K.S. and Muniz, K. (2004) Distribuição espacial e sazonal da biomassa fitoplanctônica e dos parâmetros hidrológicos no estuário do Rio Formoso (Rio Formoso, Pernambuco, Brasil). Tropical Oceanography 32, 89106.Google Scholar
Silva, M.H., Silva-Cunha, M.G.G., Passavante, J.Z.O., Grego, C.K.S. and Muniz, K. (2009) Estrutura sazonal e espacial do microfitoplâncton no estuário tropical do rio Formoso, PE, Brasil. Acta Botanica Brasilica 23, 355368.Google Scholar
Van der Veer, H.W. and Leggett, W.C. (2005) Recruitment. In Gibson, R. (ed.) Flatfishes: biology and exploitation. Oxford: Blackwell Science, pp. 120137.Google Scholar
Walsh, H.J., Peters, D.S. and Cyrus, D.P. (1999) Habitat utilization by small flatfishes in a North Carolina estuary. Estuaries 22, 803813.Google Scholar
Yamashita, Y., Tanaka, M. and Miller, J.M. (2001) Ecophysiology of juvenile flatfishes in nursery grounds. Journal of Sea Research 45, 205218.Google Scholar
Zar, J.H. (1999) Biostatiscal analysis. 4th edition. Upper Saddle River, NJ: Prentice-Hall.Google Scholar