Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T23:21:33.436Z Has data issue: false hasContentIssue false

Spatial and temporal variations of microphytoplankton composition related to hydrographic conditions in the Gulf of Gabès

Published online by Cambridge University Press:  03 June 2009

Zaher Drira
Affiliation:
Université de Sfax, Faculté des Sciences de Sfax, Département des Sciences de la Vie. Unité de recherche LR/UR/05ES05 Biodiversité et Ecosystèmes Aquatiques, Route Soukra Km 3.5–BP 1171–CP 3000 Sfax, Tunisie
Malika Bel Hassen
Affiliation:
Institut National des Sciences et Technologie de la Mer, 2025 Salammbô Tunis, Tunisie
Asma Hamza
Affiliation:
Institut National des Sciences et Technologie de la Mer, Centre de Sfax BP 1035 Sfax 3018Tunisie
Ahmed Rebai
Affiliation:
Centre de Biotechnologies de Sfax, BP ‘K’, 3038 Sfax, Tunisie
Abderrahmen Bouain
Affiliation:
Université de Sfax, Faculté des Sciences de Sfax, Département des Sciences de la Vie. Unité de recherche LR/UR/05ES05 Biodiversité et Ecosystèmes Aquatiques, Route Soukra Km 3.5–BP 1171–CP 3000 Sfax, Tunisie
Habib Ayadi
Affiliation:
Université de Sfax, Faculté des Sciences de Sfax, Département des Sciences de la Vie. Unité de recherche LR/UR/05ES05 Biodiversité et Ecosystèmes Aquatiques, Route Soukra Km 3.5–BP 1171–CP 3000 Sfax, Tunisie
Lotfi Aleya*
Affiliation:
Université de Franche-Comté, Laboratoire de Chrono- environnement, UMR CNRS 6249- Place Leclerc, F-25030 Besançon cedex, France
*
Correspondence should be addressed to: L. Aleya, Université de Franche-Comté, Laboratoire de Chrono-environnement, UMR CNRS 6249-Place Leclerc, F-25030 Besançon cedex, France email: [email protected]

Abstract

The spatial and temporal variations of the microphytoplankton communities were examined during four oceanographic cruises conducted between July 2005 and March 2007 aboard the RV ‘Hannibal’. Water thermal stratification started in May–June, and a thermocline established at 20 m depth, but ranged between 25 m during July and more than 30 m during September. The high concentrations of chlorophyll-a were observed during the May–June semi-mixed conditions and were mainly correlated with the concentrations of phosphate, suggesting a potential limitation by this nutrient. The Bacillariophyceae were dominant in the coastal samples, whereas they declined in the offshore area, most likely due to silicate shortage. Cyanobacteriae developed over semi-mixed conditions and at the thermocline depth. Relatively constant abundance of dinoflagellates was observed during the sampling periods from the coast to the offshore area, mainly explained by the high diversity species of this group. The results suggest that some phytoplankton taxa are generally adapted to specific hydrological conditions, whereas the dinoflagellates did not seem to follow this trend. Our findings have important biogeochemical implications in relationship with the export fluxes of the particulate matter throughout the water column.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aleya, L. (1991) The concept of ecological succession applied to an eutrophic lake through the seasonal coupling of diversity index and several parameters. Archiv für Hydrobiologie 120, 327343.CrossRefGoogle Scholar
Balech, E. (1988) Los dinoflagelados del Atlantico sudoccidental. Instituto Español de Oceanografia, Publicaciones especiales, 309 pp.Google Scholar
Bel Hassen, M., Drira, Z., Hamza, A., Ayadi, H., Akrout, F. and Issaoui, H. (2008) Summer phytoplankton pigments and community composition related to water mass properties in the Gulf of Gabès. Estuarine, Coastal and Shelf Science 77, 645656.CrossRefGoogle Scholar
Berland, B.R., Bonin, D.J. and Maestrini, S.Y. (1980) Azote ou phosphore ? Considérations sur « paradoxe nutritionnel » de la Méditerranée. Oceanologia Acta 3, 135142.Google Scholar
Bethoux, J.P. and Prieur, L. (1983) Hydrologie et circulation en Mediterranee Nord-occidentale. Petrole Techniques 299, 2534.Google Scholar
Bourrelly, P. (1985) Les Algues d'Eau Douce. Initiation à la Systèmatique. Tome II. Les Algues bleues et rouges. Les Euglénins, Peridiniens et Cryptomonadines. Paris: Société Nouvelle des Editions Boubée.Google Scholar
Bustillos-Guzman, J., Claustre, H. and Marty, J.C. (1995) Specific phytoplankton signatures and their relationship to hydrographic conditions in the coastal northwestern Mediterranean Sea. Marine Ecology Progress Series 124, 247258.CrossRefGoogle Scholar
CGP (1996) Annuaire des statistiques des pêches en Tunisie. Ministère de l'Agriculture, Tunisie.Google Scholar
Campbell, L. and Vaulot, D. (1993) Photosynthetic picoplankton community structure in the subtropical North Pacific Ocean near Hawaii (station ALOHA). Deep-Sea Research 40, 20432060.CrossRefGoogle Scholar
Chessel, D., Dufour, A.B. and Thioulouse, J. (2004) The ade4 package-I-One-table methods. R News 4, 510.Google Scholar
Claustre, H., Kerhervé, P., Marty, J.C., Prieur, L. and Hecq, J.H. (1994) Phytoplankton distribution associated with a geostrophic front: ecological and biogeochemical implications. Journal of Marine Research 52, 711742.CrossRefGoogle Scholar
Claustre, H. and Marty, J.C. (1995) Specific phytoplankton biomasses and their relation to primary production in the tropical north Pacific. Deep-Sea Research 42, 14751493.CrossRefGoogle Scholar
Costas, E. and Lopez-Rodas, V. (1991) A comparative study of DNA content in six Dinoflagellate species. Scientia Marina 55, 557561.Google Scholar
Cushing, D.H. (1989) A difference in structure between ecosystems in strongly stratified waters and in those that are only weakly stratified. Journal of Plankton Research 11, 113.CrossRefGoogle Scholar
Daly-Yahia Kéfi, O., Souissi, S., Gomez, F. and Daly Yahia, M.N. (2005) Spatio-temporal distribution of the dominant diatom and dinoflagellate species in the Bay of Tunis (SW Mediterranean Sea). Mediterranean Marine Science 6, 1734.CrossRefGoogle Scholar
Dodge, J.D. (1985) Atlas of dinoflagellates. A scanning electron microscope survey. London: Ferrand Press.Google Scholar
Drira, Z., Hamza, A., Bel Hassen, M., Ayadi, H., Bouaïn, A. and Aleya, L. (2008) Dynamics of dinoflagellates and environmental factors during the summer in the Gulf of Gabès (Tunisia, Eastern Mediterranean Sea). Scientia Marina 72, 5971.Google Scholar
Eker, E. and Kideys, A.E. (2000) Weekly variations in phytoplankton structure of a harbour in Mersin Bay (north-eastern Mediterranean). Turkish Journal of Botany 24, 1324.Google Scholar
Elloumi, J., Guermazi, W., Ayadi, H., Bouaïn, A. and Aleya, L. (2008) Abundance and biomass of prokaryotic and eukaryotic microorganisms coupled with environmental factors in an arid multi-pond solar saltern (Sfax, Tunisia). Journal of the Marine Biological Association of the United Kingdom 89, 243253.CrossRefGoogle Scholar
Estrada, M., Varela, R.A., Salat, J., Cruzado, A. and Arias, E. (1999) Spatio-temporal variability of the winter phytoplankton distribution across the Catalan and North Baleriac fronts (NW Mediterranean). Journal of Plankton Research 21, 120.CrossRefGoogle Scholar
Fisher, T.R., Harding, L.W., Stanley, D.W. and Ward, L.G. (1988) Phytoplankton, nutrients and turbidity in the Chesapeake, Delaware and Hudson estuaries. Estuarine, Coastal and Shelf Science 27, 6193.Google Scholar
Fogg, G.E. (1991) The phytoplanktonic ways of life. New Phytology 118, 191232.CrossRefGoogle ScholarPubMed
Gomez, F., Echevarrià, F., Garcia, C.M., Prieto, L., Ruiz, J., Reul, A., Jiménez-Gomez, F., Valera, M. (2000) Microplankton distribution in the Strait of Gibraltar: coupling between organisms and hydrodynamic structures. Journal of Plankton Research 22, 603617.CrossRefGoogle Scholar
Gomez, F. and Gorsky, G. (2003) Annual microphytoplankton cycles in the Villefranche Bay, Ligurian Sea, NW Mediterranean. Journal of Plankton Research 25, 323339.CrossRefGoogle Scholar
Hernandez-Becerril, D.U. and Bravo-Sierra, E. (2001) Planktonic silicoflagellates (Dictyochophyceae) from the Mexican Pacific Ocean. Botanica Marina 44, 417423.CrossRefGoogle Scholar
Hillebrand, H., Dürselen, C.D., Kirschtel, D., Pollingher, U. and Zohary, T. (1999) Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35, 403424.CrossRefGoogle Scholar
Huber-Pestalozzi, G. (1968) Das phytoplankton des Susswassars, 1. Halfte, Cryptophyceae, Chloromonadophyceae, Dinophyceae. Stuttgart: E. Schweizerbart Verlag.Google Scholar
Jacquet, S., Lennon, J.F., Marie, D. and Vaulot, D. (1998) Picoplankton population dynamics in coastal waters of the northwestern Mediterranean Sea. Limnology and Oceanography 43, 19161931.CrossRefGoogle Scholar
Kirchman, D.L., Keil, R.G. and Wheeler, P.A. (1989) The effect of amino acids on ammonium utilization and regeneration by heterotrophic bacteria in the subarctic Pacific. Deep-Sea Research 36, 17631776.Google Scholar
Krom, M.D., Brenner, S., Kress, N. and Gordon, L.I. (1991) Phosphorus limitation of primary productivity in the E. Mediterranean Sea. Limnology and Oceanography 36, 424432.Google Scholar
Legendre, P. and Legendre, L. (1998) Numerical ecology. 2nd English edition.Amsterdam: Elsevier Science BV.Google Scholar
Lévy, M., Mémery, L. and André, J.M. (1998) Simulation of primary production and export of particulate organic carbon in oceans. Journal of Plankton Research 56, 197238.Google Scholar
Lohman, H. (1908) Untersuchungen zur Feststellung des Vollständigen Gehaltes des Meeres an Plankton. Wissenschaftliche Meeresuntersuchungen 10, 131170.Google Scholar
Malone, T.C. (1971) The relative importance of nanoplankton and netplankton as primary producers in tropical ocean and neritic phytoplankton communities. Limnology and Oceanography 16, 633639.Google Scholar
Margalef, R.N. and Castellvi, J. (1967) Fitoplancton y produccion primaria de costa catalana, de julio de 1966 a julio de 1967. Investigaciones Pesqueras 31, 491502.Google Scholar
Marty, J.C., Chiaverini, J., Pizay, M.D. and Avril, B. (2002) Seasonal and inter-annual dynamics of nutrients and phytoplankton pigments in the western Mediterranean Sea at the DYFAMED time-series station (1991–1999). Deep-Sea Research 49, 19651985.Google Scholar
Meiners, K., Gradinger, R., Fehling, J., Civitarese, G. and Spindler, M. (2003) Vertical distribution of exopolymer particles in sea ice of the Fram Strait (Arctic) during autumn. Marine Ecology Progress Series 248, 113.CrossRefGoogle Scholar
Menden-Deuer, S. and Lessard, E.J. (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnology and Oceanography 45, 569579.CrossRefGoogle Scholar
Minas, H.J. and Bonin, M.C. (1988) Oxygénation physique et biologique de la Méditerranée nord occidentale en hiver et au printemps. In Minas, H.J. and Nival, P. (eds) Océanographie pélagique méditerranéenne. Oceanologica Acta 9, 123132.Google Scholar
Morel, A. and Andre, J.M. (1991) Pigment distribution and primary production in the Western Mediterranean as derived and modeled from coastal zone color scanner observation. Journal of Geophysical Research 96, 1268512698.CrossRefGoogle Scholar
Neveux, J., Vaulot, D., Courties, C. and Fukai, E. (1989) Green photosynthetic bacteria associated with a deep chlorophyll maximum of the Sargasso Sea. Compte-Rendus de l'Académie des Sciences 308, 914.Google Scholar
Oksanen, J., Kindt, R., Legendre, P. and O'Hara, R.B. (2006) Community Ecology Package. Version 1, 8–3.Google Scholar
Onodera, J. and Takahashi, K. (2005) Silicoflagellate fluxes and environmental variations in the northwestern North Pacific during December 1997–May 2000. Deep-Sea Research I 52, 371388.CrossRefGoogle Scholar
Peres-Neto, P., Legendre, P., Dray, S. and Borcard, D. (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87, 26142625.Google Scholar
Pinckney, J.L., Richardson, T.L., Millie, D.F. and Paerl, H.W. (2001) Application of photopigment biomarkers for quantifying microalgal community composition and in situ growth rates. Organic Geochemistry 32, 585595.CrossRefGoogle Scholar
Rassoulzadegan, F. (1979) Cycles de la distribution de différentes catégories de particules du seston et essai d'identification des principales poussées phytoplanctoniques dans les eaux néritiques de Villefranche-Sur-Mer. Journal of Experimental Marine Biology and Ecology 38, 4156.CrossRefGoogle Scholar
R-Development Core Team (2006) R: A language and environment for statistical computing. Vienna, Austria: 20 R Foundation for Statistical Computing, ISBN 3-900051-07-0.Google Scholar
Redfield, A.C., Ketchum, B.H., Richards, F.A. (1963) The influence of organisms in the composition of seawater. In Hill, M.N. (ed.) The sea, Volume II. New York: Wiley, pp. 2677.Google Scholar
Reynolds, C.S. (1997) Vegetation processes in the pelagic: a model for ecosystem theory. Excellence in Ecology, 9. Oldendorf, Germany: Ecology Institute.Google Scholar
Satsmadjis, J. and Frigilos, N. (1983) Red tide in Greek waters. Vie et Milieu 33, 111117.Google Scholar
Shannon, C.E. and Weaner, G. (1949) The mathematical theory of communication. Urbana, Chicago, IL: University of Illinois Press.Google Scholar
Sherr, E. and Sherr, B. (1988) Role of microbes in pelagic food webs: a revised concept. Limnology and Oceanography 33, 12251227.CrossRefGoogle Scholar
Thingstad, F., Zweifel, U.L. and Rassoulzadegan, F. (1998) Limitation of heterotrophic bacteria and phytoplankton in the northwest Mediterranean. Limnology and Oceanography 43, 3344.Google Scholar
Tomas, C.R., Hasle, G.R., Steidinger, A.K., Syvertsen, E.E. and Tangen, C. (1996) Identifying marine diatoms and dinoflagellates. London: Academic Press.Google Scholar
Tregouboff, G. and Rose, M. (1957) Manuel de planctonologie méditerranéenne. Volume II. Paris: CNRS.Google Scholar
Utermöhl, H. (1958) Zur Vervollkommung der quantitativen Phytoplankton Methodik. Mitteilungen Internationale Vereinigung für Theoretische und Angewandte. Limnologie 9, 138.Google Scholar