Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-04T04:08:23.429Z Has data issue: false hasContentIssue false

A new approach to marine fish otoliths study: electron paramagnetic resonance

Published online by Cambridge University Press:  09 May 2013

Roberto Weider De Assis Franco
Affiliation:
Universidade Estadual do Norte Fluminense, CCT, Laboratório de Ciências Físicas, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-620, Brazil
Juraci Aparecido Sampaio
Affiliation:
Universidade Estadual do Norte Fluminense, CCT, Laboratório de Ciências Físicas, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-620, Brazil
Antônio Medina
Affiliation:
Universidade Estadual de Maringá, Departamento de Física, Avenida Colombo, 5790, Maringá, PR, 87020-900, Brazil
Ana Paula Madeira Di Beneditto*
Affiliation:
Universidade Estadual do Norte Fluminense, CBB, Laboratório de Ciências Ambientais, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-620, Brazil
*
Correspondence should be addressed to: A. P. M. Di Beneditto, Universidade Estadual do Norte Fluminense, CBB, Laboratório de Ciências Ambientais, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-620, Brazil email: [email protected]

Abstract

The biocrystallization process and the prescence of manganese in sagitta otoliths is described for the first time via electron paramagnetic spectroscopy. Spectra of Mn2+ are applied to verify inter-species differences in 12 Sciaenidae species and geographic variations among three stocks of banded croaker Paralonchurus brasiliensis and rake stardrum Stellifer rastrifer. Similar spectra shape and zero-field splitting D (22.4 mT) indicated that the biocrystallization process is the same for all fish species, at any stage of development and under different environmental conditions, corresponding to Mn2+ in the aragonite (CaCO3). Inter-species differences in Mn2+ concentration were detected regarding the otolith shape. Elongated otoliths have higher manganese concentrations compared to rounded otoliths. Geographic variations among stocks of P. brasiliensis and S. rastrifer could be detected. Fish stocks under riverine influence have less Mn2+ concentration than ones under marine influence. Manganese detection via electron paramagnetic spectroscopy is a non-destructive approach that can be useful in fish stocks studies.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abragam, A. and Bleaney, B. (1970) Electron paramagnetic resonance of transition ions. New York: Dover.Google Scholar
Angiolillo, P.J. and Graneto, N. (2008) Characterization, stability, and origin of natural radiation-induced defects in the biogenic calcite of Belemnitella americana from the upper cretaceous: an electron paramagnetic resonance study. Radiation Physics and Chemistry 77, 545552.CrossRefGoogle Scholar
Angus, J.G., Raynor, J.B. and Robson, M. (1979) Reliability of experimental partition coefficients in carbonate systems: evidence for inhomogeneous distribution of impurity cations. Chemical Geology 27, 181205.CrossRefGoogle Scholar
Araia, T. and Hirata, T. (2006) Differences in the trace element deposition in otoliths between marine- and freshwater-resident Japanese eels, Anguilla japonica, as determined by laser ablation ICPMS. Environmental Biology of Fishes 75, 173182.CrossRefGoogle Scholar
Bittar, V.T. and Di Beneditto, A.P.M. (2009) Diet and potential feeding overlap between Trichiurus lepturus (Osteichthyes, Perciformes) and Pontoporia blainvillei (Mammalia, Cetacea) in northern Rio de Janeiro, Brazil. Zoologia 26, 374378.CrossRefGoogle Scholar
Braun, A.S. and Fontoura, N.F. (2004) Reproductive biology of Menticirrhus littoralis in southern Brazil (Actinopterygii: Perciformes: Sciaenidae). Neotropical Ichthyology 2, 3136.CrossRefGoogle Scholar
Broecker, W.S. and Peng, T.H. (1982) Tracers in the sea, 2nd edition. New York: Eldigio Press.Google Scholar
Brophy, D., Jeffries, T.E. and Danilowicz, B.S. (2004) Elevated manganese concentrations at the cores of clupeid otoliths: possible environmental, physiological, or structural origins. Marine Biology 144, 779786.CrossRefGoogle Scholar
Brown, J. (2006) Classification of juvenile flatfishes to estuarine and coastal habitats based on the elemental composition of otoliths. Estuarine, Coastal and Shelf Science 66, 594611.CrossRefGoogle Scholar
Campana, S.E. (1999) Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series 188, 263297.CrossRefGoogle Scholar
Cardinale, M., Doering-Arjes, P., Kastowsky, M. and Mosegaard, H. (2004) Effects of sex, stock, and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths. Canadian Journal of Fisheries and Aquatic Sciences 61, 158167.CrossRefGoogle Scholar
Béarez, P., Carlier, G., Lorand, J-P. and Parodi, G-C. (2005) Destructive and non-destructive microanalysis of biocarbonates applied to anomalous otoliths of archaeological and modern sciaenids (Teleostei) from Peru and Chile. Comptes Rendus Biologies 328, 243252.CrossRefGoogle ScholarPubMed
Dal Negro, A. and Ungaretti, L. (1971) Refinement of the crystal structure of aragonite. American Mineralogist 56, 768772.Google Scholar
Di Beneditto, A.P. and Lima, N.R.W. (2003) Biometria de teleósteos da costa norte do Estado do Rio de Janeiro para estudos sobre piscivoria. Biotemas 16, 135144.Google Scholar
Di Beneditto, A.P.M. and Ramos, R.M.A. (2004) Biology of the boto-cinza dolphin (Sotalia fluviatilis) in south-eastern Brazil. Journal of the Marine Biological Association of the United Kingdom 84, 12451250.CrossRefGoogle Scholar
Di Beneditto, A.P., Ramos, R.M.A. and Lima, N.R.W. (2001) Os golfinhos: origem, classificação, captura acidental, hábito alimentar. 1st edition. Porto Alegre, RS: Editora Cinco Continentes.Google Scholar
Di Beneditto, A.P.M., Souza, C.M.M., Kehrig, H.A. and Rezende, C.E. (2011) Use of multiple tools to assess the feeding preference of coastal dolphins. Marine Biology 158, 22092217.CrossRefGoogle Scholar
Dove, S.G., Gillanders, B.M. and Kingsford, M.J. (1996) An investigation of chronological differences in the deposition of trace metals in the otoliths of two temperate reef fishes. Journal of Experimental Marine Biology and Ecology 205, 1533.CrossRefGoogle Scholar
Eaton, G.R., Eaton, S.S., Barr, D.P. and Weber, R.T. (2010) Quantitative EPR. 1st edition. New York: Springer.CrossRefGoogle Scholar
Elsdon, T.S. and Gillanders, B.M. (2003) Relationship between water chemistry and otolith elemental concentrations in juvenile black bream Acanthopagrus butcheri. Marine Ecology Progress Series 260, 263272.CrossRefGoogle Scholar
Froese, R. and Pauly, D. (2011) FishBase. Electronic publication, available at: www.fishbase.org (accessed 5 April 2013).Google Scholar
Geffen, A.J., Jarvis, K., Thorpe, J.P., Leah, R.T. and Nash, R.D.M. (2003) Spatial differences in the trace element concentrations of Irish Sea plaice Pleuronectes platessa and whiting Merlangius merlangus otoliths. Journal of Sea Research 50, 245254.CrossRefGoogle Scholar
Geo, Brasil (2002) Perspectivas do Meio Ambiente. 1st edition. Brasília: Editora do Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais e Renováveis.Google Scholar
Gillanders, B.M. and Kingsford, M.J. (2003) Spatial variation in elemental composition of otoliths of three species of fish (family Sparidae). Estuarine, Coastal and Shelf Science 56, 116.Google Scholar
Gonzalez-Salas, C. and Lenfant, P. (2007) Interannual variability and intraannual stability of the otolith shape in European anchovy Engraulis encrasicolus (L.) in the Bay of Biscay. Journal of Fish Biology 70, 3549.CrossRefGoogle Scholar
Hamer, P.A. and Jenkins, G.P. (2007) Comparison of spatial variation in otolith chemistry of two fish species and relationships with water chemistry and otolith growth. Journal of Fish Biology 71, 10351055.CrossRefGoogle Scholar
Hori, R. and Iwasaki, S.I. (1976) On the manganese content of the egg of Oryzias latipes and its changes during the early development. Protoplasma 87, 403407.CrossRefGoogle Scholar
Limburg, K.E. (1995) Otolith strontium traces environmental history of subyearling American shad Alosa sapidissima. Marine Ecology Progress Series 119, 2535.CrossRefGoogle Scholar
Lombarte, A., Torres, G.J. and Morales-Nin, B. (2003) Specific Merluccius otolith growth patterns related to phylogenetic and environmental factors. Journal of the Marine Biological Association of the United Kingdon 83, 277281.CrossRefGoogle Scholar
Luczkovich, J.J., Sprague, M.W., Johnson, S.E. and Pullinger, R.C. (1999) Delimiting spawning areas of weakfish Cynoscion regalis (family Sciaenidae) in Pamlico Sound, North Carolina using passive hydroacoustic surveys. Bioacoustics 10, 143160.CrossRefGoogle Scholar
Melancon, S., Fryer, B.J., Gagnon, J.E. and Ludsin, A.S. (2008) Mineralogical approaches to the study of biomineralization in fish otoliths. Mineralogical Magazine 72, 627637.CrossRefGoogle Scholar
Márcano, L., Alió, J. and Altuve, D. (2002) Biometria y talla de primera madurez de la tonquicha, Cynoscion jamaicensis, de la costa norte de la península de Paria, estado Sucre, Venezuela. Zootecnia Tropical 20, 89103.Google Scholar
Monteiro, L., Di Beneditto, A.P.M., Guilhermo, L.H. and Rivera, L.A. (2005) Allometric changes and shape differentiation of sagitta otolithis in sciaenid fishes. Fisheries Research 74, 288299.CrossRefGoogle Scholar
Montegrossi, G., Di Benedetto, F., Minissale, A., Paladini, M., Pardi, L.A., Romanelli, M. and Romei, F. (2006) Determination and significance of the Mn(II) zero-field splitting (ZFS) interaction in the geochemistry of travertines. Applied Geochemistry 21, 820825.CrossRefGoogle Scholar
Muehe, D. and Valentini, E. (1998) O litoral do Estado do Rio de Janeiro: uma caracterização físico-ambiental. 1st edition. Rio de Janeiro, RJ: Editora da Fundação de Estudos do Mar.Google Scholar
Nicolite, M., Truccolo, E.C., Schettini, C.A.F. and Carvalho, C.E.V.C. (2009) Oscilação do nível de água e a co-oscilação da maré astronômica no baixo estuário do rio Paraíba do Sul, RJ. Revista Brasileira de Geofísica 27, 225239.CrossRefGoogle Scholar
Oliveira, M.A. (2008) Estrutura da variação de forma e relações alométricas de otólitos sagitta em estoques pesqueiros de peixes da família Sciaenidae. MSc thesis. Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Brazil.Google Scholar
Oliveira, M.A., Di Beneditto, A.P.M. and Monteiro, L.R. (2009) Variação geográfica na forma e nas relações alométricas dos otólitos sagitta da maria-luiza Paralonchurus brasiliensis (Steindachner, 1875) (Teleostei, Sciaenidae) no litoral norte do Rio de Janeiro (21°S–23°S), Brasil. Boletim do Instituto de Pesca 35, 475485.Google Scholar
Pecharsky, V.K. and Zavalij, P.Y. (2009) Fundamentals of powder diffraction and structure characterization of materials. 2nd edition. New York: Springer.Google Scholar
Platt, C. and Popper, A.N. (1981) Fine structure and function of the ear. In Tavolga, W.N., Popper, A.N. and Fay, R.N. (eds) Hearing and sound communication in fishes. New York: Springer, pp. 338.CrossRefGoogle Scholar
Raju, C.L., Narasimhulu, K.V., Gopal, N.O., Rao, J.L. and Reddy, B.C.V. (2002) Electron paramagnetic resonance, optical and infrared spectral studies on the marine mussel Arca burnesi shells. Journal of Molecular Structure 608, 201211.CrossRefGoogle Scholar
Ranaldi, M.M. and Gagnon, M.M. (2010) Trace metal incorporation in otoliths of pink snapper (Pagrus auratus) as an environmental monitor. Comparative Biochemistry and Physics, Part C 152, 248255.Google ScholarPubMed
Robert, M.C., Michels-Souza, M.A. and Chaves, P.T. (2007) Biologia de Paralonchurus brasiliensis (Steindachner) (Teleostei, Sciaenidae) no litoral sul do Estado do Paraná, Brasil. Revista Brasileira de Zoologia 24, 191198.CrossRefGoogle Scholar
Sanchez-Jerez, P., Gillanders, B.M. and Kingsford, M.J. (2002) Spatial variability of trace elements in fish otoliths: comparison with dietary items and habitat constituents in seagrass meadows. Journal of Fish Biology 61, 801821.CrossRefGoogle Scholar
Slezak, A., Lech, J. and Bojko, I. (1979) Electron paramagnetic resonance of Mn2+ ions in aragonite single crystals. Physica Status Solidi, Part A 54, 755759.CrossRefGoogle Scholar
Swearer, S.E., Forrester, G.E., Steele, M.A., Brooks, A.J. and Lea, D.W. (2003) Spatiotemporal and interspecific variation in otolith trace-elemental fingerprints in a temperate estuarine fish assemblage. Estuarine, Coastal and Shelf Science 56, 11111123.CrossRefGoogle Scholar
Tracey, S.R., Lyle, J.M. and Duhamel, G. (2006) Application of elliptical Fourier analysis of otolith form as a tool for stock identification. Fisheries Research 77, 138147.CrossRefGoogle Scholar
Valentin, J.L. and Monteiro-Ribas, W.M. (1993) Zooplankton community structure on the east-southeast Brazilian continental shelf (18°–23°S). Continental and Shelf Research 13, 407424.CrossRefGoogle Scholar
Vianna, M., Costa, F.E.S. and Ferreira, C.N. (2004) Length–weight relationship of fish caught as by-catch by shrimp fishery in the southeastern coast of Brazil. Boletim do Instituto de Pesca 30, 8185.Google Scholar
Volpedo, A. and Echeverria, D.D. (2003) Ecomorphological patterns of the sagitta in fish on the continental shelf off Argentina. Fisheries Research 60, 551560.CrossRefGoogle Scholar
Vongsavat, V., Winotai, P. and Meejoo, S. (2006) Phase transitions of natural corals monitored by ESR spectroscopy. Nuclear Instruments and Methods in Physics Research, Section B 243, 167173.CrossRefGoogle Scholar
Wang, C.H., Lin, Y.T., Shiao, J.C., You, C.F. and Tzeng, W.N. (2009) Spatio-temporal variation in the elemental compositions of otoliths of southern bluefin tuna Thunnus maccoyii in the Indian Ocean and its ecological implication. Journal of Fish Biology 75, 11731193.CrossRefGoogle ScholarPubMed
White, L.K., Szab, A., Carkne, P. and Chastee, N.D. (1977) An electron spin resonance study of manganese (II) in the aragonite lattice of a clam shell, Mya arenaria. Journal of Physical Chemistry 81, 14201424.CrossRefGoogle Scholar