Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-30T19:14:41.276Z Has data issue: false hasContentIssue false

Nectins in sea urchin eggs and embryos

Published online by Cambridge University Press:  11 May 2009

Yukio Yokota
Affiliation:
Biological Laboratory, Aichi Prefectural University, Mizuho, Nagoya 467, Japan.
Valeria Matranga
Affiliation:
Istituto di Biologia dello Sviluppo, Consiglio Nazionale delle Ricerche, Via Archirafi 20, 90123 Palermo, Italy.
Francesca Zito
Affiliation:
Istituto di Biologia dello Sviluppo, Consiglio Nazionale delle Ricerche, Via Archirafi 20, 90123 Palermo, Italy.
Melchiorre Cervello
Affiliation:
Istituto di Biologia dello Sviluppo, Consiglio Nazionale delle Ricerche, Via Archirafi 20, 90123 Palermo, Italy.
Eizo Nakano
Affiliation:
Nagoya University, Chikusa, Nagoya 464, Japan

Extract

The extracellular matrix of the sea urchin involves a protein with a molecular weight of 180 kDa (sea urchin fibronectin), which corresponds to mammalian fibronectin, and a nectin specific to Echinoidea with a molecular weight of 105–115 kDa (sea urchin nectin). Sea urchin fibronectin and sea urchin nectin have cell adhesion protein properties. They are, however, different from each other in biochemical properties, biological functions and intraembryonic distribution. Sea urchin fibronectin isolated from the sea urchin ovary accelerates scattering of micromere-derived cells and promotes spicule formation of micromeres in vitro. Sea urchin nectins identified so far in Paracentrotus lividus (Lamarck), Temnopleurus hardwicki (Gray) and Pseudocentrotus depressus (A. Agassiz) are presumably homologous molecules displayed in different species. They seem to be secreted into the hyaline layer as its constituents, and to play some role in morphogenesis of the embryo.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adelson, D.L., Alliegro, M.C. & McClay, D.R., 1992. On the ultrastructure of hyalin, a cell adhesion protein of the sea urchin embryo extracellular matrix. Journal of Cell Biology, 116, 12831289.CrossRefGoogle ScholarPubMed
Adelson, D.L. & Humphreys, T.D., 1988. Sea urchin morphogenesis and cell-hyalin adhesion are perturbed by a monoclonal antibody specific for hyalin. Development, 104, 391402.CrossRefGoogle ScholarPubMed
Alliegro, M.C. & Alliegro, M.A. 1991. The structure and activities of echinonectin: a developmentally regulated cell adhesion glycoprotein with galactose-specific lectin activity. Glycobiology, 1, 253256.CrossRefGoogle ScholarPubMed
Alliegro, M.C, Ettensohn, C.A., Burdsal, C.A., Erickson, H.P. & McClay, D.R., 1988. Echinonectin: a new embryonic substrate adhesion protein. Journal of Cell Biology, 107, 23192327.CrossRefGoogle ScholarPubMed
Boucaut, J.-C, Darribere, T., Poole, T.J., Aoyama, H., Yamada, K.M. & Thiery, J.P., 1984. Biologically active synthetic peptides as probes of embryonic development: a competitive peptide inhibitor of fibronectin function inhibits gastrulation in amphibian embryos and neural crest migration in avian embryos. Journal of Cell Biology, 99, 18221830.CrossRefGoogle ScholarPubMed
Bronner-Fraser, M., 1985. Alterations in neural crest migration by a monoclonal antibody that affects cell adhesion. Journal of Cell Biology, 101, 610617.CrossRefGoogle ScholarPubMed
Ekblom, P., Vestweber, D. & Kemler, R., 1986. Cell matrix interactions and cell adhesion during development. Annual Review of Cell Biology, 2, 2747.CrossRefGoogle ScholarPubMed
Fink, R.D. & McClay, D.R., 1985. Three cell recognition changes accompany the ingression of sea urchin primary mesenchyme cells. Developmental Biology, 107, 6674.CrossRefGoogle ScholarPubMed
Gustafson, T. & Wolpert, L., 1963. The cellular basis of morphogenesis and sea urchin development. International Review of Cytology. 15, 139214.CrossRefGoogle ScholarPubMed
Gustafson, T. & Wolpert, L., 1967. Cellular movement and contact in sea urchin morphogenesis. Biological Reviews, 42, 442498.CrossRefGoogle ScholarPubMed
Iwata, M. & Nakano, E., 1981. Fibronectin from the ovary of the sea urchin, Pseudocentrotus depressus. Wilhelm Roux's Archives of Developmental Biology, 190, 8386.CrossRefGoogle ScholarPubMed
Iwata, M. & Nakano, E., 1985. Fibronectin-binding acid polysaccharide in the sea urchin embryo. Wilhelm Roux’s Archives of Developmental Biology, 194, 377384.CrossRefGoogle Scholar
Kane, R.E., 1970. Direct isolation of the hyaline layer protein released from the cortical granules of the sea urchin egg at fertilization. Journal of Cell Biology, 45, 615622.CrossRefGoogle ScholarPubMed
Katow, H., Yamada, K.M. & Solursh, M., 1982. Occurrence of fibronectin on the primary mesenchyme cell surface during migration in the sea urchin embryo. Differentiation, 22, 120124.CrossRefGoogle ScholarPubMed
Matranga, V., Di Ferro, D., Zito, F., Cervello, M. & Nakano, E., 1992. A new extracellular matrix protein of the sea urchin embryo with properties of substrate adhesion molecule. Wilhelm Roux’s Archives of Developmental Biology, 201, 173178.CrossRefGoogle ScholarPubMed
McClay, D.R. & Fink, R.D., 1982. Sea urchin hyalin: appearance and function in development. Developmental Biology, 92, 285293.CrossRefGoogle ScholarPubMed
Miyachi, Y., Iwata, M., Sato, H. & Nakano, E., 1984. Effect of fibronectin on cultured cells derived from isolated micromeres of the sea urchin Hemicentrotus pulcherrimus. Zoological Science, 1, 265271.Google Scholar
Naidet, C, Sémériva, M., Yamada, K.M. & Thiery, J.P., 1987. Peptides containing the cell-attachment recognition signal Arg-Gly-Asp prevent gastrulation in Drosophila embryos. Nature, London, 325, 348350.CrossRefGoogle ScholarPubMed
Nakano, E., Iwata, M. & Matranga, V., 1990. Collagen-binding proteins in sea urchin eggs and embryos. In Mechanisms of fertilization (ed. B, Dale), pp. 645652. Berlin: Springer.Google Scholar
Spiegel, E., Burger, M. & Spiegel, M., 1980. Fibronectin in the developing sea urchin embryo. Journal of Cell Biology, 87, 309313.CrossRefGoogle ScholarPubMed
Spiegel, E., Burger, M. & Spiegel, M., 1983. Fibronectin and laminin in the extracellular matrix and basement membrane of sea urchin embryos. Experimental Cell Research, 144, 4755.CrossRefGoogle ScholarPubMed
Stephens, R.E. & Kane, R.E., 1970. Some properties of hyalin. The calcium–insoluble protein of the hyaline layer of the sea urchin egg. Journal of Cell Biology, 44, 611617.CrossRefGoogle ScholarPubMed
Veno, P.A., Strumski, M.A. & Kinsey, W.H., 1990. Purification and characterization of echinonectin, a carbohydrate-binding protein from sea urchin eggs. Development, Growth and Differentiation, 32, 315319.CrossRefGoogle ScholarPubMed
Wessel, G.M., Marchase, R.B. & McClay, D.R., 1984. Ontogeny of the basal lamina in the sea urchin embryo. Developmental Biology, 103, 235245.CrossRefGoogle ScholarPubMed
Yokota, Y., Matranga, V., Zito, F., Cervello, M. & Nakano, E., 1992. Immunological studies on extracellular matrix proteins of sea urchins. Zoological Science, 9, 1178.Google Scholar