Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-02T23:43:49.557Z Has data issue: false hasContentIssue false

Moult cycle and growth of Maja squinado (Decapoda: Majidae) in coastal habitats of Galicia, north-west Spain

Published online by Cambridge University Press:  19 September 2003

María-Paz Sampedro
Affiliation:
Instituto Español de Oceanografía, Centro Oceanográfico de A Coruña, Muelle de Ánimas s/n, Apartado 130, 15080 A Coruña, Spain
Eduardo González-Gurriarán*
Affiliation:
Departamento de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Universidade da Coruña, Campus da Zapateira s/n, 15071 A Coruña, Spain
Juan Freire
Affiliation:
Departamento de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Universidade da Coruña, Campus da Zapateira s/n, 15071 A Coruña, Spain
*
Corresponding author, e-mail: [email protected]

Abstract

Over the course of the moult cycle of Maja squinado, the spider crab changes in the hardness and colour of the carapace were assessed and used as methods to identify the intermoult stage in each individual. This intermoult staging was later verified by means of the microscopic observation of the maxilla. These staging techniques made it possible for the prompt identification of the principal intermoult stages—postmoult, intermoult and premoult. In 90% of the cases analysed, there was a correlation between the presence of an underlying carapace and a pink colour of the abdominal vein in crabs in advanced premoult stages.

The seasonality of the moult was studied based on the number of specimens in the postmoult stage. There were two main moulting periods—the first occurring in April, and the second, longer period was between July and November. A hypothetical growth model was established and growth rates were determined by length–frequency distribution analyses. Three groups of juveniles and one group of adults were identified. The adults were only found among the population between July and October. In both males and females, the moult increment rate was lower in terminal moults (mean=22%) than in juvenile or prepubertal moults (mean=27%).

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aiken, D.E., 1973. Proecdysis, setal development, and molt prediction in the american lobster (Homarus americanus). Journal of the Fisheries Research Board of Canada, 30, 1337–1344.Google Scholar
Botsford, L.W., 1984. Effect of individual growth rates on expected behavior of the northern California Dungeness crab (Cancer magister) fishery. Canadian Journal of Fisheries and Aquatic Sciences, 41, 99–107.Google Scholar
Caddy, J.F., 1986. Size frequency analysis in stock assessment— some perspectives, approaches and problems. Proceedings of the Gulfand Caribbean Fishery Institute, 37, 212–238.Google Scholar
Camus, P., 1983. Resultats d'une Operation de marquage d'ar-aignee de mer (Herbst) adult en baie d'Audierne (Bretagne Sud). International Council for the Exploration of the Sea, Shellfish Committee, CM 1983/K:29, 11 pp.Google Scholar
Carlisle, D.B., 1957. On the hormonal inhibition of moulting in decapod Crustacea. II. The terminal anecdysis in crabs. Journal of the Marine Biological Association of the United Kingdom, 36, 291–307.Google Scholar
Castro, M., 1995. Use of length—frequency analysis for esti-mating the age structure of the catch of Nephrops norvegicus (Crustacea: Nepropidae). International Councilfor the Exploration of the Sea, Marine Science Symposia, 199, 301–309.Google Scholar
Chang, E.S., 1989. Endocrine regulation of moulting in Crustacea. Reviews in Aquatic Sciences, 1, 131–157.Google Scholar
Chang, E.S., 1995. Physiological and biochemical changes during the molt cycle in decapod crustaceans: an overview. Journal of Experimental Marine Biology and Ecology, 193, 1–14.Google Scholar
Chittleborough, R.G., 1975. Environmental factors affecting the growth and survival of juvenile western rock lobsters Panulirus longipes (Milne-Edwards). Australian Journal of Marine and Freshwater Research, 26, 177–196.Google Scholar
Conan, G.Y., 1985. Periodicity and phasing of molting. In Crustacean Issues. Vol. 3. Factors in adult growth (ed. A. Wenner), pp. 73–99. Rotterdam: A.A. Balkema.Google Scholar
Daguerre de Hureaux, N., 1970. Recherches sur Upogebia littoralis Risso (Decapode, Anomoure). I. Etüde du cycle d'intermue. Bulletin de la Societe des Sciences Naturelles et Physiques du Maroc, 50, 67–81.Google Scholar
Dawe, E.G., Hoenig, J.M., O'Keefe, P.G. & Moriyasu, M., 1992. Molt indicators and growth per molt for male snow crabs (Chionoecetes opilio). International Councilfor the Exploration of the Sea, Shellfish Committee, CM 1992/K:35, 15 pp.Google Scholar
DeGoursey, R.E. & Auster, P.J., 1989. Aspects of a mating aggregation of the spider crab Libinia emarginata. In Proceedings of the American Academy of Underwater Science, 9th Annual Symposium, Woods Hole, pp. 83–90.Google Scholar
DeGoursey, R.E. & Stewart, L., 1985. Spider crab podding beha-vior and mass molting. Underwater Naturalist (Bulletin of the American Littoral Society), 15, 13–16.Google Scholar
De Kergariou, G., 1976. Premiers resultats obtenus par marquage de l'araignee de mer, Maia squinado, deplacements, mortalit par pêche. International Councilfor the Exploration of the Sea, Shellfish andBenthos Committee, CM 1976/K: 14, 6 pp.Google Scholar
De Kergariou, G., 1984. L'araignee de mer, H. Biologie et exploi-tation. La Pêche Maritime, 1279, 575–583.Google Scholar
Drach, P., 1939. Mue et cycle d'intermue chez les crustaces deca-podes. Annales del Institut Oceanographique, Paris, 19, 103–391.Google Scholar
Drach, P. & Tchernigovtzeff, C., 1967. Sur le methode de deter-mination des estades d'intermue et son application generale aux crustaces. Vie et Milieu, 18, 595–609.Google Scholar
Edwards, E., 1980. Preliminary results of a tagging experiment on the spider crab (Maja squinado) in the English Channel. International Council for the Exploration of the Sea, Shellfish Committee, CM 1980/K:12, 7 pp.Google Scholar
Gonzalez-Gurriaran, E., Fernandez, L., Freire, J. & Muifio, R., 1996. Reproductive biology of the spider crab Maja squinado (Decapoda, Majidae) based on the analysis of seminal recep-tacles. International Council for the Exploration of the Sea, Shellfish Committee, CM 1996/K:29, 17 pp.Google Scholar
Gonzalez-Gurriaran, E., Fernandez, L., Freire, J. & Muifio, R., 1998. Mating and role of seminal receptacles in the reproductive biology of the spider crab Maja squinado (Decapoda, Majidae). Journal of Experimental Marine Biology and Ecology, 220, 269–285.Google Scholar
Gonzalez-Gurriaran, E. & Freire, J., 1994. Movement patterns and habitat utilization in the spider crab Maja squinado (Herbst) (Decapoda, Majidae) measured by ultrasonic telemetry. Journal of Experimental Marine Biology and Ecology, 184, 269–291.Google Scholar
Gonzalez-Gurriaran, E., Freire, J. & Bernardez, C., 2002. Migratory patterns of female spider crabs Maja squinado detected using electronic tags and telemetry. Journal of Crustacean Biology, 22, 91–97.Google Scholar
Gonzalez-Gurriaran, E., Freire, J., Farifia, A.C. & Fernandez, A., 1998. Growth at moult and intermoult period in the Norway lobster Nephrops norvegicus from Galician waters. ICES Journal of Marine Science, 55, 924–940.Google Scholar
Gonzalez-Gurriaran, E., Freire, J., Parapar, J., Sampedro, M.P. & Urcera, M., 1995. Growth at moult and moulting season-ality of the spider crab, Maja squinado (Herbst) (Decapoda: Majidae) in experimental conditions: implications for juvenile life history. Journal of Experimental Marine Biology and Ecology, 189, 183–203.Google Scholar
Hartnoll, R.G., 1963. The biology of Manx spider crabs. Proceedings of the Zoological Society of London, 141, 423–496.Google Scholar
Hoenig, J.M., Dawe, E.G. & O'Keefe, P.G., 1994. Molt indicators and growth per molt for male snow crabs (Chionoecetes opilio). Journal of Crustacean Biology, 14, 273–279.Google Scholar
Ingle, R.W., 1980. British crabs. London: Oxford University Press.Google Scholar
Ju, S.J., Secor, D.H. & Rodger-Harvey, H., 1999. Use of extrac-table lipofuscin for age determination of blue crab Callinectes sapidus. Marine Ecology Progress Series, 185, 171–179.Google Scholar
Kamiguchi, Y., 1968. A new method for the determination of intermolt stages in the freshwater prawn, Palaemon paucidens. Zoological Magazine (Tokyo), 77, 326–329.Google Scholar
Latrouite, D. & Foll, D.L., 1989. Donnees sur les migrations des crabes tourteau Cancer pagurus et les araignees de mer Maja squinado. Oceanis, 15, 133–142.Google Scholar
Le Foll, D., 1993. Biologie et exploitation de l'araignee de mer Maja squinado Herbst en Manche Ouest. PhD thesis, Universite de Bretagne Occidentale, France.Google Scholar
Le Foll, D., Brichet, E., Reyss, J.L., Lalou, C. & Latrouite, D., 1989. Age determination of the spider crab Maja squinado and the European lobster Homarus gammarus by 228Th/228Ra chron-ology: possible extension to other crustaceans. Canadian Journal of Fisheries and Aquatic Sciences, 46, 720–724.Google Scholar
Lebour, M.V., 1927. The larval stages of the Plymouth Brachyura. Proceedings of the Zoological Society of London, 1, 473–560.Google Scholar
Lyle, W.G. & MacDonald, C.D., 1983. Molt stage determination in the Hawaiian spiny lobster Panulirus marginatus. Journal of Crustacean Biology, 3, 208–216.Google Scholar
MacDonald, P.D.M. & Green, P.E.J., 1985. User'sguideto program MIX: an interactive program for fitting mixture distributions. Ontario, Canada: Ichthus Data Systems.Google Scholar
MacDonald, P.D.M. & Pitcher, T.J., 1979. Age-groups from size frequency data: a versatile and efficient method of analyzing distribution mixtures. Journal of the Fisheries Research Board of Canada, 36, 987–1001.Google Scholar
Meyer, C.G., 1993. The biology and fishery of the spider crab (Maja squinado) around Jersey (Channel Islands). MSc thesis, University of Plymouth, Plymouth, UK.Google Scholar
Moriyasu, M. & Mallet, P., 1986. Molt stages of the snow crab Chionoecetes opilio by observation of morphogenesis of setae on the maxilla. Journal of Crustacean Biology, 6, 709–718.Google Scholar
Neumann, V., 1998. A review of the Maja squinado (Crustacea: Decapoda: Brachyura) species-complex with a key to eastern Atlantic and Mediterranean species of the genus. Journal of Natural History, 32, 1667–1684.Google Scholar
Newman, G.G. & Pollock, D.E., 1974. Biological cycles, maturity and availability of rock lobster Jasus lalandii on two South African fishing grounds. Investigational Report, Sea Fisheries Branch, Union of South Africa, 107, 1–16.Google Scholar
O'Halloran, M.J. & O'Dor, R.K., 1988. Moltcycle of male snow crabs, Chionoecetes opilio, from observations of external features, setal changes, and feeding behavior. Journal of Crustacean Biology, 8, 164–176.Google Scholar
Sampedro, M.P., Gonzalez-Gurriaran, E., Freire, J. & Muino, R., 1999. Morphometry and sexual maturity in the spider crab Maja squinado (Decapoda: Majidae) in Galicia, Spain. Journal of Crustacean Biology, 19, 578–592.Google Scholar
Scheer, B.T., 1960. Aspects of the intermolt cycle in natantians. Comparative Biochemestry and Physiology, 1, 3–18.Google Scholar
Sheehy, M., Caputi, N., Chubb, C. & Belchier, M., 1998. Use of lipofuscin for resolving cohorts of western rock lobster (Panulirus cygnus). Canadian Journal of Fisheries and Aquatic Sciences, 55, 925–936.Google Scholar
Skinner, D.M., 1985. Moulting and regulation. In The biology of Crustacea, vol. 9 (ed. D.E. Bliss and L.H. Mantele), pp. 431-46. New York: Academic Press.Google Scholar
Stevcic, Z., 1973. Les migrations de FAraignee de mer. Rapports de la Commision International de la Mer Mediterranee, 21, 597–598.Google Scholar
Stevenson, J.R., 1972. Changing activities of the crustacean epidermis during the molting cycle. American Zoologist, 12, 373–380.Google Scholar
Teissier, G., 1935. Croissance des variants sexuels chez L. Travaux de l'Station Biologique de Roseoff, 13, 99–130.Google Scholar
Tully, O., 1993. Morphological lipofuscin (age pigment) as an indicator of age in Nephrops norvegicus and Homarus gammarus. International Council for the Exploration of the Sea (CM Papers and Reports), CM 1993/K:18, 10 pp.Google Scholar
Wilber, D.H. & Wilber, T.P., 1989. The effects of holding space and diet on the growth of the West Indian spider crab Mithrax spinosissimus (Lamarck). Journal of Experimental Marine Biology andEcology, 131, 215–222.Google Scholar