Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T01:22:29.079Z Has data issue: false hasContentIssue false

Mixed-stock and discriminant models use for assessing recruitment sources of estuarine fish populations in La Plata Basin (South America)

Published online by Cambridge University Press:  20 March 2019

Esteban Avigliano*
Affiliation:
Universidad de Buenos Aires (UBA)-CONICET, Instituto de Investigaciones en Producción Animal (INPA), Facultad de Ciencias Veterinarias, Av. Chorroarín 280, C1427CWO Buenos Aires, Argentina
Jorge Pisonero
Affiliation:
Departamento de Física, Facultad de Ciencias, Universidad de Oviedo, Federico García Lorca, no. 18, 33007 Oviedo, Spain
Nerea Bordel
Affiliation:
Departamento de Física, Facultad de Ciencias, Universidad de Oviedo, Federico García Lorca, no. 18, 33007 Oviedo, Spain
Alejandro Dománico
Affiliation:
Comisión de Investigaciones Científicas (CIC), Calle 526 s/n, 1900 La Plata, Buenos Aires, Argentina Laboratoriode la Dirección de Pesca Continental, Subsecretaría de Pesca y Acuicultura, Ministerio de Agroindustria, Alférez Pareja 125, C1107BJD Buenos Aires, Argentina
Alejandra Vanina Volpedo
Affiliation:
Universidad de Buenos Aires (UBA)-CONICET, Instituto de Investigaciones en Producción Animal (INPA), Facultad de Ciencias Veterinarias, Av. Chorroarín 280, C1427CWO Buenos Aires, Argentina
*
Author for correspondence: Esteban Avigliano, E-mail: [email protected]

Abstract

The objective of this study was to identify potential recruitment sources of Prochilodus lineatus from freshwater areas (Paraná and Uruguay rivers) to estuarine population of the Río de la Plata Estuary (La Plata Basin, South America), considering young (age-1) and adult (age-7) fish. LA-ICP-MS chemical analysis of the otolith core (nine element:Ca ratios) of an unknown mixed sample from Río de la Plata Estuary (2011 and 2017) was compared with a young-of-year baseline data set (same cohort) and classified into freshwater nurseries (Paraná or Uruguay river) by using maximum classification-likelihood models (MLE and MCL) and quadratic discriminant analysis (QDA). Considering the three models used, the Uruguay River was the most important contributor for both young and adult populations. The young population (2011) was highly mixed with contributions between 31.7 to 68.3%, while the degree of mixing was found to decrease in 2017 (adult fish) from 97.1 to 100% contributions. The three employed methods showed comparable estimates, however, the QDA showed a high similarity with the MCL model, suggesting sensitivity to evaluate small contributions, unlike the MLE method. Our results show the potential application of maximum likelihood mixture models and QDA for determining the relative importance of recruitment sources of fish in estuarine waters of the La Plata Basin.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avigliano, E and Volpedo, AV (2013) Use of otolith strontium:calcium ratio as an indicator of seasonal displacements of the silverside (Odontesthes bonariensis) in a freshwater-marine environment. Marine and Freshwater Research 64, 746751.Google Scholar
Avigliano, E and Volpedo, AV (2016) A review of the application of otolith microchemistry toward the study of Latin American fishes. Reviews in Fisheries Science and Aquaculture 24, 369384.Google Scholar
Avigliano, E, Velasco, G and Volpedo, AV (2015) Use of lapillus otolith microchemistry as an indicator of the habitat of Genidens barbus from different estuarine environments in the southwestern Atlantic Ocean. Environmental Biology of Fishes 98, 16231632.Google Scholar
Avigliano, E, Pisonero, J, Dománico, A, Silva, N, Sánchez, S and Volpedo, AV (2018 a) Spatial segregation and connectivity in young and adult stages of Megaleporinus obtusidens inferred from otolith elemental signatures: implications for management. Fisheries Research 204, 239244.Google Scholar
Avigliano, E, Pisonero, J, Sánchez, S, Domanico, A and Volpedo, AV (2018 b) Estimating contributions from nursery areas to fish stocks in freshwater systems using otolith fingerprints: the case of the Streaked prochilod in the La Plata Basin (South America). River Research and Applications 34, 863872.Google Scholar
Backhaus, K, Erichson, B, Plinke, W and Weiber, R. (2016) Multivariate Analysemethoden – Eine anwendungsorientierte Einführung. Berlin: Springer. 854 pp.Google Scholar
Baigún, C, Minotti, P and Oldani, N (2013) Assessment of sábalo (Prochilodus lineatus) fisheries in the lower Paraná river basin (Argentina) based on hydrological, biological, and fishery indicators. Neotropical Ichthyology 11, 199210.Google Scholar
Barnes, TC and Gillanders, BM (2013) Combined effects of extrinsic and intrinsic factors on otolith chemistry: implications for environmental reconstructions. Canadian Journal of Fisheries and Aquatic Sciences 70, 11591166.Google Scholar
Bonetto, AA, Canon Veron, M and Roldán, D (1981) Nuevos aportes al conocimiento de las migraciones de peces en el río Paraná. Ecosur 8, 2940.Google Scholar
Bouchard, C, Thorrold, SR and Fortier, L (2015) Spatial segregation, dispersion and migration in early stages of polar cod Boreogadus saida revealed by otolith chemistry. Marine Biology 162, 855868.Google Scholar
Brown, DR and Fuentes, CM (2010) Daily increments in otoliths of sábalo (Prochilodus lineatus) larvae: short communication. Journal of Applied Ichthyology 26, 123125.Google Scholar
Campana, SE (1999) Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series 188, 263297.Google Scholar
Campana, SE (2013) Otolith elemental as a natural marker of fish stocks. In Cadrin, SX, Kerr, LA and Mariani, S (eds), Stock Identification Methods: Applications in Fishery Science, 2nd Edn. Amsterdam: Elsevier, pp. 227245.Google Scholar
Campana, SE and Neilson, JD (1985) Microstructure of fish otoliths. Canadian Journal of Fisheries and Aquatic Sciences 42, 10141032.Google Scholar
Campana, SE and Thorrold, SR (2001) Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations? Canadian Journal of Fisheries and Aquatic Sciences 58, 3038.Google Scholar
Casselman, JM (1990) Growth and relative size of calcified structures of fish. Transactions of the American Fisheries Society 119, 673688.Google Scholar
Crook, DA and Gillanders, BM (2006) Use of otolith chemical signatures to estimate carp recruitment sources in the mid-Murray River, Australia. River Research and Applications 22, 871879.Google Scholar
Delfino, R and Baigun, C (1985) Marcaciones de peces en el embalse de salto Grande, Rio Uruguay (Argentina – Uruguay). Revista de la Asociación de Ciencias Naturales del Litoral 16, 8593.Google Scholar
DeVries, DA, Grimes, CB and Prager, MH (2002) Using otolith shape analysis to distinguish eastern Gulf of Mexico and Atlantic Ocean stocks of king mackerel. Fisheries Research 57, 5162.Google Scholar
Elsdon, T, Wells, B, Campana, S, Gillanders, B, Jones, C, Limburg, K, Secor, D, Throrrold, S and Walther, B (2008) Otolith chemistry to describe movements and life-history parameters of fish: hypotheses, assumptions, limitations and inferences. Oceanography and Marine Biology 46, 297330.Google Scholar
Espinach Ros, A, Sverlij, S, Amestoy, F and Spinetti, M (1998) Migration pattern of the sábalo Prochilodus lineatus (Pisces, Prochilodontidae) tagged in the lower Uruguay River. Verhandlung International Verein Limnology 22, 22342236.Google Scholar
Espinach Ros, A, Demonte, LD, Campana, M, Trogolo, A, Dománico, A and Cordiviola, E (2008) Proyecto de evaluación del recurso sábalo (Prochilodus lineatus) en el Paraná. Informe de los resultados de la segunda etapa (2006–2007). Secretaría de Agricultura, Ganadería, Pesca y Alimentos Subsecretaría de Pesca y Acuicultura, Buenos Aires, Argentina. Available at http://www.agroindustria.gob.ar/site/pesca/pesca_continental/ (2006–2007).pdf, Buenos Aires.Google Scholar
Fraile, I, Arrizabalaga, H and Rooker, JR (2014) Origin of Atlantic bluefin tuna (Thunnus thynnus) in the Bay of Biscay. ICES Journal of Marine Science 72, 625634.Google Scholar
Gillanders, BM (2002) Connectivity between juvenile and adult fish populations: do adults remain near their recruitment estuaries? Marine Ecology Progress Series 240, 215223.Google Scholar
Gillanders, BM (2005) Using elemental chemistry of fish otoliths to determine connectivity between estuarine and coastal habitats. Estuarine, Coastal and Shelf Science 64, 4757.Google Scholar
Guerrero, RA, Acha, EM, Framiñan, MB and Lasta, CA (1997) Physical oceanography of the Río de la Plata Estuary, Argentina. Continental Shelf Research 17, 727742.Google Scholar
Hair, JF, Black, WC, Babin, BJ and Anderson, RE (2014) Multivariate data analysis. Harlow: Pearson. 738 pp.Google Scholar
Hamer, P, Henderson, A, Hutchison, M, Kemp, J, Green, C and Feutry, P (2015) Atypical correlation of otolith strontium: calcium and barium: calcium across a marine-freshwater life history transition of a diadromous fish. Marine and Freshwater Research 66, 411419.Google Scholar
Jochum, KP, Weis, U, Stoll, B, Kuzmin, D, Yang, Q, Raczek, I, Jacob, DE, Stracke, A, Birbaum, K, Frick, DA, Günther, D and Enzweiler, J (2011) Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines. Geostandards and Geoanalytical Research 35, 397429.Google Scholar
Kerr, LA and Campana, SE (2013) Chemical composition of fish hard parts as a natural marker of fish stocks. In Cadrin, SX, Kerr, LA and Mariani, S (eds), Stock Identification Methods: Applications in Fishery Science, 2nd Edn. Amsterdam: Elsevier, pp. 205234.Google Scholar
Lazartigues, AV, Plourde, S, Dodson, JJ, Morissette, O, Ouellet, P and Sirois, P (2016) Determining natal sources of capelin in a boreal marine park using otolith microchemistry. ICES Journal of Marine Science: Journal du Conseil 73, 26442652.Google Scholar
Lazartigues, AV, Girard, C, Brodeur, P, Lecomte, F, Mingelbier, M and Sirois, P (2017) Otolith microchemistry to identify sources of larval yellow perch in a fluvial lake: an approach towards freshwater fish management. Canadian Journal of Fisheries and Aquatic Sciences 75, 474487.Google Scholar
Millar, R (1990) Comparison of methods for estimating mixed stock fishery composition. Canadian Journal of Fisheries and Aquatic Sciences 47, 22352241.Google Scholar
MINAGRO (2018) Subsecretaría de Pesca y Acuicultura, Argentina. Ministerio de Agroindustria. Available at: http://www.minagri.gob.ar/site/pesca/index.phpGoogle Scholar
Niklitschek, EJ, Secor, DH, Toledo, P, Valenzuela, X, Cubillos, LA and Zuleta, A (2014) Nursery systems for Patagonian grenadier off Western Patagonia: large inner sea or narrow continental shelf? ICES Journal of Marine Science: Journal du Conseil 71, 374390.Google Scholar
NIST (2012) National Institute of Standards and Technology. Certificate of Analysis-Standard Reference Material 612. Gaithersburg: NIST, pp. 4. https://www-s.nist.gov/srmors/certificates/612.pdf.Google Scholar
Pearce, NJG, Perkins, WT, Westgate, JA, Gorton, MP, Jackson, SE, Neal, CR and Chenery, SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards Newsletter 21, 115144.Google Scholar
Radigan, WJ, Carlson, AK, Fincel, MJ and Graeb, BDS (2018) Otolith chemistry as a fisheries management tool after flooding: the case of Missouri River gizzard shad. River Research and Applications 34, 270278.Google Scholar
Ranaldi, MM and Gagnon, MM (2008) Zinc incorporation in the otoliths of juvenile pink snapper (Pagrus auratus Forster): the influence of dietary versus waterborne sources. Journal of Experimental Marine Biology and Ecology 360, 5662.Google Scholar
Rooker, JR, Secor, DH, DeMetrio, G, Kaufman, AJ, Ríos, AB and Tičina, V (2008) Evidence of trans-Atlantic movement and natal homing of bluefin tuna from stable isotopes in otoliths. Marine Ecology Progress Series 368, 231239.Google Scholar
Rooker, JR, Arrizabalaga, H, Fraile, I, Secor, DH, Dettman, DL, Abid, N, Addis, P, Deguara, S, Karakulak, FS, Kimoto, A, Sakai, O, Macías, D and Santos, MN (2014) Crossing the line: migratory and homing behaviors of Atlantic bluefin tuna. Marine Ecology Progress Series 504, 265276.Google Scholar
Rooker, JR, Wells, RJ, Itano, DG, Thorrold, SR and Lee, JM (2016) Natal origin and population connectivity of bigeye and yellowfin tuna in the Pacific Ocean. Fisheries Oceanography 25, 277291.Google Scholar
Schloesser, RW, Neilson, JD, Secor, DH and Rooker, JR (2010) Natal origin of Atlantic bluefin tuna (Thunnus thynnus) from Canadian waters based on otolith δ 13C and δ 18O. Canadian Journal of Fisheries and Aquatic Sciences 67, 563569.Google Scholar
Sverlij, SB, Espinach Ros, A and Ortí, G (1993) Synopsis de los datos biologicos del sabalo Prochilodus lineatus (Valenciennes, 1847). FAO, sinopsis sobre la pesca 154, Roma.Google Scholar
Thorisson, K, Jónsdóttir, IG, Marteinsdottir, G and Campana, SE (2011) The use of otolith chemistry to determine the juvenile source of spawning cod in Icelandic waters. ICES Journal of Marine Science 68, 98106.Google Scholar
Volpedo, A. V., Thompson, G. and Avigliano, E. (2017) Atlas de Otolitos de Peces de Argentina. Buenos Aires: CAFP-BA PIESCI.Google Scholar
Webb, SD, Woodcock, SH and Gillanders, BM (2012) Sources of otolith barium and strontium in estuarine fish and the influence of salinity and temperature. Marine Ecology Progress Series 453, 189199.Google Scholar
White, J and Ruttenberg, B (2007) Discriminant function analysis in marine ecology: some oversights and their solutions. Marine Ecology Progress Series 329, 301305.Google Scholar
Yoshinaga, J, Nakama, A, Morita, M and Edmonds, JS (2000) Fish otolith reference material for quality assurance of chemical analyses. Marine Chemistry 69, 9197.Google Scholar