Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T14:03:22.924Z Has data issue: false hasContentIssue false

Inter-annual variability in otolith chemistry of catfish Genidens barbus from South-western Atlantic estuaries

Published online by Cambridge University Press:  28 February 2017

Esteban Avigliano*
Affiliation:
Instituto de Investigaciones en Producción Animal (INPA-CONICET), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires (UBA), Av. Chorroarín 280 (C1427CWO), Ciudad Autónoma de Buenos Aires, Argentina
Barbara Carvalho
Affiliation:
Laboratório de Ictiologia, Universidade Federal do Paraná (UFPR), Av. Beira-mar s/n (83255-000), Pontal do Paraná, Paraná, Brazil
Gonzalo Velasco
Affiliation:
Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Av. Italia, Km 8 (96203-900), Rio Grande, Rio Grande do Sul, Brazil
Pamela Tripodi
Affiliation:
Instituto de Investigación e Ingenieria Ambiental (3iA), Universidad Nacional de San Martín (UNSAM), Martín de Irigoyen 3100 (1650), San Martín, Buenos Aires, Argentina
Alejandra Vanina Volpedo
Affiliation:
Instituto de Investigaciones en Producción Animal (INPA-CONICET), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires (UBA), Av. Chorroarín 280 (C1427CWO), Ciudad Autónoma de Buenos Aires, Argentina
*
Correspondence should be addressed to: E. Avigliano, Instituto de Investigaciones en Producción Animal (INPA-CONICET), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires (UBA), Av. Chorroarín 280 (C1427CWO), Ciudad Autónoma de Buenos Aires, Argentina. email: [email protected]

Abstract

The catfish Genidens barbus is a commercial species from South America. The aim of the present study was to examine the inter-annual variability in estuary-specific chemical signatures of otolith cores (Ba:Ca, Mg:Ca, Mn:Ca, Sr:Ca and Zn:Ca ratios) for three estuaries from Argentina and Brazil where adults were collected over multiple years. Secondarily, we evaluated whether the percentages of classification of individuals to their natal origin place are affected by the grouping of several cohorts. Most element:Ca ratios were not significantly different among year cohorts. Results from PERMANOVA revealed significant differences in the multi-element signatures of the otolith core between cohorts for the Plata River estuary (PR) (P = 0.006) and the Patos Lagoon (PL) (P = 0.03), while no significant differences (P = 0.9) were found for Paranaguá Bay (PB). The percentages of spatial classification (discriminant function analyses) decreased to between 15.5 and 25% for PR and PL when cohorts were grouped. This work makes it clear that the temporal variation in the chemical signature of the adult catfish otolith core can greatly affect the percentages of spatial classification.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abreu, P.C., Bergesch, M., Proença, L.A., Garcia, C.A.E. and Odebrecht, C. (2010) Short- and long-term chlorophyll a variability in the shallow microtidal Patos Lagoon Estuary, southern Brazil. Estuaries and Coasts 33, 554569.CrossRefGoogle Scholar
Acha, M.E., Mianzan, H., Guerrero, R., Carreto, J., Giberto, D., Montoya, N. and Carignan, M. (2008) An overview of physical and ecological processes in the Rio de la Plata Estuary. Continental Shelf Research 28, 15791588.CrossRefGoogle Scholar
Anderson, M.J. (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecology 26, 3246.Google Scholar
Anderson, M.J., Ellingsen, K.E. and McArdle, B.H. (2006) Multivariate dispersion as a measure of beta diversity. Ecology Letters 9, 683693.CrossRefGoogle ScholarPubMed
Angulo, R. and Araújo, A. (1996) Classificação da costa paranaense com base na sua dinâmica como subsídio à ocupação da orla litorânea. Boletim Paranaense de Geociências 44, 717.Google Scholar
Araújo, F.G. (1988) Distribuição, abundância relativa e movimentos sazonais de bagres marinhos (Siluriformes, Ariidae) no estuário da Lagoa dos Patos (RS), Brasil. Revista Brasileira de Zoologia 5, 509543.Google Scholar
Arslan, Z. and Secor, D.H. (2008) High resolution micromill sampling for analysis of fish otoliths by ICP-MS: effects of sampling and specimen preparation on trace element fingerprints. Marine Environmental Research 66, 364371.Google Scholar
Avigliano, E., Carvalho, B., Velasco, G., Tripodi, P., Vianna, M. and Volpedo, A.V. (2016) Nursery areas and connectivity of the adult anadromous catfish (Genidens barbus) revealed by otolith core microchemistry in the southwestern Atlantic Ocean. Marine and Freshwater Research. doi: 10.1071/MF16058.Google Scholar
Avigliano, E., Velasco, G. and Volpedo, A.V. (2015a) Use of lapillus otolith microchemistry as an indicator of the habitat of Genidens barbus from different estuarine environments in the southwestern Atlantic Ocean. Environmental Biology of Fishes 98, 16231632.Google Scholar
Avigliano, E., Velasco, G. and Volpedo, A.V. (2015b) Assessing the use of two southwestern Atlantic estuaries by different life cycle stages of the anadromous catfish Genidens barbus (Lacépède, 1803) as revealed by Sr:Ca and Ba:Ca ratios in otoliths. Journal of Applied Ichthyology 31, 740743.CrossRefGoogle Scholar
Avigliano, E. and Volpedo, A.V. (2013) Use of otolith strontium:calcium ratio as an indicator of seasonal displacements of the silverside (Odontesthes bonariensis) in a freshwater-marine environment. Marine and Freshwater Research 64, 746.Google Scholar
Avigliano, E. and Volpedo, A.V. (2015) New records of anadromous catfish Genidens barbus (Lacépède, 1803) in the Paraná Delta (South America): evidence of extension in the migration corridor? Marine Biodiversity Records 8, 13.Google Scholar
Baigún, C.R.M., Colautti, D., López, H.L., Van Damme, P.A. and Reis, R.E. (2012) Application of extinction risk and conservation criteria for assessing fish species in the lower La Plata River basin, South America. Aquatic Conservation: Marine and Freshwater Ecosystems 22, 181197.Google Scholar
Bailey, D.S., Fairchild, E. and Kalnejais, L.H. (2015) Microchemical signatures in juvenile winter flounder otoliths provide identification of natal nurseries. Transactions of the American Fisheries Society 144, 173183.CrossRefGoogle Scholar
Bath, G.E., Thorrold, S.R., Jones, C.M., Campana, S.E., McLaren, J.W. and Lam, J.W.H. (2000) Strontium and barium uptake in aragonitic otoliths of marine fish. Geochimica et Cosmochimica Acta 64, 17051714.Google Scholar
Beamish, R.J. and Fournier, D.A. (1981) A method for comparing the precision of a set of age determinations. Canadian Journal of Fisheries and Aquatic Sciences 38, 982983.Google Scholar
Beck, M.W., Heck, K.L., Able, K.W., Childers, D.L., Eggleston, D.B., Gillanders, B.M., Halpern, B., Hays, C.G., Hoshino, K., Minello, T.J., Orth, R.J., Sheridan, P.F. and Weinstein, M.P. (2001) The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. BioScience 51, 633.Google Scholar
Bouchard, C., Thorrold, S.R. and Fortier, L. (2015) Spatial segregation, dispersion and migration in early stages of polar cod Boreogadus saida revealed by otolith chemistry. Marine Biology 162, 855868.Google Scholar
Bradbury, I.R., Campana, S.E. and Bentzen, P. (2008) Otolith elemental composition and adult tagging reveal spawning site fidelity and estuarine dependency in rainbow smelt. Marine Ecology Progress Series 368, 255268.Google Scholar
Brown, J.A. (2006) Classification of juvenile flatfishes to estuarine and coastal habitats based on the elemental composition of otoliths. Estuarine, Coastal and Shelf Science 66, 594611.Google Scholar
Brown, R.J. and Severin, K.P. (2009) Otolith chemistry analyses indicate that water Sr:Ca is the primary factor influencing otolith Sr:Ca for freshwater and diadromous fish but not for marine fish. Canadian Journal of Fisheries and Aquatic Sciences 66, 17901808.CrossRefGoogle Scholar
Campana, S.E. (1999) Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series 188, 263297.Google Scholar
Campana, S.E., Chouinard, G.A., Hanson, J.M., Fréchet, A. and Brattey, J. (2000) Otolith elemental fingerprints as biological tracers of fish stocks. Fisheries Research 46, 343357.Google Scholar
Campana, S.E., Thorrold, S.R., Jones, C.M., Gunther, D., Tubrett, M., Longerich, H., Jackson, S., Halden, N.M., Kalish, J.M., Piccoli, P., de Pontual, H., Troadec, H., Panfili, J., Secor, D.H., Severin, K.P., Sie, S.H., Thresher, R., Teesdale, W.J. and Campbell, J.L. (1997) Comparison of accuracy, precision, and sensitivity in elemental assays of fish otoliths using the electron microprobe, proton-induced X-ray emission, and laser ablation inductively coupled plasma mass spectrometry. Canadian Journal of Fisheries and Aquatic Sciences 54, 20682079.Google Scholar
Carson, H.S., López-Duarte, P.C., Cook, G.S., Fodrie, F.J., Becker, B.J., Dibacco, C. and Levin, L.A. (2013) Temporal, spatial, and interspecific variation in geochemical signatures within fish otoliths, bivalve larval shells, and crustacean larvae. Marine Ecology Progress Series 473, 133148.Google Scholar
Di Dario, F., Alves, C.B.M., Boos, H., Frédou, F.L., Lessa, R.P.T., Mincarone, M.M., Pinheiro, M.A.A., Polaz, C.N.M., Reis, R.E., Rocha, L.A., Santana, F.M., Santos, R.A., Santos, S.B., Vianna, M. and Vieira, F. (2015) A better way forward for Brazil's fisheries. Science 363, 10791079.Google Scholar
Daros, F.A., Spach, H.L. and Correia, A.T. (2016) Habitat residency and movement patterns of Centropomus parallelus juveniles in a subtropical estuarine complex. Journal of Fish Biology 88, 17961810.Google Scholar
Doubleday, Z.A., Harris, H.H., Izzo, C. and Gillanders, B.M. (2014) Strontium randomly substituting for calcium in fish otolith aragonite. Analytical Chemistry 86, 865869.CrossRefGoogle ScholarPubMed
Fairclough, D.V., Edmonds, J.S., Jackson, G., Lenanton, R.C.J., Kemp, J., Molony, B.W., Keay, I.S., Crisafulli, B.M. and Wakefield, C.B. (2013) A comparison of the stock structures of two exploited demersal teleosts, employing complementary methods of otolith element analysis. Journal of Experimental Marine Biology and Ecology 439, 181195.Google Scholar
Ferguson, G.J., Ward, T.M. and Gillanders, B.M. (2011) Otolith shape and elemental composition: complementary tools for stock discrimination of mulloway (Argyrosomus japonicus) in southern Australia. Fisheries Research 110, 7583.Google Scholar
Gillanders, B.M. (2002) Temporal and spatial variability in elemental composition of otoliths: implications for determining stock identity and connectivity of populations. Canadian Journal of Fisheries and Aquatic Sciences 59, 669679.Google Scholar
Gillanders, B.M. (2005) Using elemental chemistry of fish otoliths to determine connectivity between estuarine and coastal habitats. Estuarine, Coastal and Shelf Science 64, 4757.CrossRefGoogle Scholar
Gillanders, B.M., Able, K.W., Brown, J.A., Eggleston, D.B. and Sheridan, P.F. (2003) Evidence of connectivity between juvenile and adult habitats for mobile marine fauna: an important component of nurseries. Marine Ecology Progress Series 247, 281295.CrossRefGoogle Scholar
Gower, J.C. (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53, 325338.CrossRefGoogle Scholar
Graham, M.H. (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84, 28092815.CrossRefGoogle Scholar
Guerrero, R.A., Acha, E.M., Framiñan, M.B. and Lasta, C.A. (1997) Physical oceanography of the Río de la Plata Estuary, Argentina. Continental Shelf Research 17, 727742.CrossRefGoogle Scholar
Hamer, P.A., Jenkins, G.P. and Gillanders, B.M. (2003) Otolith chemistry of juvenile snapper Pagrus auratus in Victorian waters: natural chemical tags and their temporal variation. Marine Ecology Progress Series 263, 261273.Google Scholar
Hayes, A.F. (1998) SPSS procedures for approximate randomization tests. Behavior Research Methods, Instruments and Computers 30, 536543.Google Scholar
Holden, M.J. and Raitt, D.F.S. (1974) Manual of fisheries science part 2 – methods of resource investigation and their application. Rome: FAO.Google Scholar
Kerr, L.A. and Campana, S.E. (2013) Chemical composition of fish hard parts as a natural marker of fish stocks. In Cadrin, S.X., Kerr, L.A. and Mariani, S. (eds) Stock identification methods: applications in fishery science, 2nd edition. San Diego, CA: Academic Press, pp. 205234.Google Scholar
Kraus, R.T. and Secor, D.H. (2004) Incorporation of strontium into otoliths of an estuarine fish. Journal of Experimental Marine Biology and Ecology 302, 85106.Google Scholar
Lana, P.C., Marone, E., Lopes, R.M. and Machado, E.C. (2001) The subtropical estuarine complex of Paranaguá Bay, Brazil. Ecological Studies 144, 131145.CrossRefGoogle Scholar
Leakey, C.D.B., Attrill, M.J. and Fitzsimons, M.F. (2009) Multi-element otolith chemistry of juvenile sole (Solea solea), whiting (Merlangius merlangus) and European seabass (Dicentrarchus labrax) in the Thames Estuary and adjacent coastal regions. Journal of Sea Research 61, 268274.Google Scholar
Lin, Y.J., Jessop, B.M., Weyl, O.L.F., Iizuka, Y., Lin, S.H. and Tzeng, W.N. (2014) Migratory history of African longfinned eel Anguilla mossambica from Maningory River, Madagascar: discovery of a unique pattern in otolith Sr:Ca ratios. Environmental Biology of Fishes 98, 457468.CrossRefGoogle Scholar
Loher, T., Wischniowski, S. and Martin, G.B. (2008) Elemental chemistry of left and right sagittal otoliths in a marine fish Hippoglossus stenolepis displaying cranial asymmetry. Journal of Fish Biology 73, 870887.Google Scholar
Longmore, C., Fogarty, K., Neat, F., Brophy, D., Trueman, C., Milton, A. and Mariani, S. (2010) A comparison of otolith microchemistry and otolith shape analysis for the study of spatial variation in a deep-sea teleost, Coryphaenoides rupestris. Environmental Biology of Fishes 89, 591605.Google Scholar
López, R. and Bellisio, N. (1965) Contribución al conocimiento del Tachysurus barbus (Lacepede), bagre del mar argentino (Pisces. Ariidae). In López, H. (ed.) Anais do Segundo Congreso Latino-Americano de Zoología. Sao Paulo: Probiota, pp. 145153.Google Scholar
Mai, A.C.G., Condini, M.V., Albuquerque, C.Q., Loebmann, D., Saint'Pierre, T.D., Miekeley, N. and Vieira, J.P. (2014) High plasticity in habitat use of Lycengrawulis grossidens (Clupeiformes, Engraulididae). Estuarine, Coastal and Shelf Science 141, 1725.Google Scholar
Marques, W.C. and Möller, O.O. (2008) Variabilidade temporal em longo período da descarga fluvial e níveis de água da Lagoa dos Patos, Rio Grande do Sul, Brasil. Revista Brasileira de Recursos Hídricos 13, 155163.CrossRefGoogle Scholar
Martin, G.B. and Thorrold, S.R. (2005) Temperature and salinity effects on magnesium, manganese, and barium incorporation in otoliths of larval and early juvenile spot Leiostomus xanthurus. Marine Ecology Progress Series 293, 223232.Google Scholar
Martin, G.B. and Wuenschel, M.J. (2006) Effect of temperature and salinity on otolith element incorporation in juvenile gray snapper Lutjanus griseus. Marine Ecology Progress Series 324, 229239.Google Scholar
Minagro (2016) Subsecretaría de Pesca y Acuicultura, Argentina. Ministerio de Agroindustria. Available at: http://www.minagri.gob.ar/site/pesca/index.phpGoogle Scholar
MMA (2014) Ministério do Meio Ambiente do Brasil. Portarias Nos. 443, 444, 445, de 17 de Dezembro de 2014, Diário Oficial da União. Brasilia: Ministério do Meio Ambiente.Google Scholar
Möller, O.O.J., Castello, J.P. and Vaz, A.C. (2009) The effect of river discharge and winds on the interannual variability of the pink shrimp Farfantepenaeus paulensis production in Patos Lagoon. Estuaries and Coasts 32, 787796. doi: 10.1007/s12237-009-9168-6.Google Scholar
Muxagata, E., Amaral, W.J.a and Barbosa, C.N. (2012) Acartia tonsa production in the Patos Lagoon estuary, Brazil. ICES Journal of Marine Science 69, 475482.Google Scholar
Nordlie, F.G. (2012) Life-history characteristics of eleotrid fishes of the western hemisphere, and perils of life in a vanishing environment. Reviews in Fish Biology and Fisheries 22, 189224.CrossRefGoogle Scholar
Patterson, H.M., Thorrold, S.R. and Shenker, J.M. (1999) Analysis of otolith chemistry in Nassau grouper (Epinephelus striatus) from the Bahamas and Belize using solution-based ICP-MS. Coral Reefs 18, 171178.CrossRefGoogle Scholar
Patterson, W.F., Cowan, J.H., Wilson, C.A. and Chen, Z. (2008) Temporal and spatial variability in juvenile red snapper otolith elemental signatures in the Northern Gulf of Mexico. Transactions of the American Fisheries Society 137, 521532.CrossRefGoogle Scholar
Pereyra, P.E.R., Mont'Alverne, R. and Garcia, A.M. (2016) Carbon primary sources and estuarine habitat use by two congeneric ariid catfishes in a subtropical coastal lagoon. Zoologia (Curitiba) 33, 17.Google Scholar
Phung, A.T., Tulp, I., Baeyens, W., Elskens, M., Leermakers, M. and Gao, Y. (2015) Migration of diadromous and landlocked smelt populations studied by otolith geochemistry. Fisheries Research 167, 123131.Google Scholar
Ranaldi, M.M. and Gagnon, M.M. (2008) Zinc incorporation in the otoliths of juvenile pink snapper (Pagrus auratus Forster): the influence of dietary versus waterborne sources. Journal of Experimental Marine Biology and Ecology 360, 5662.Google Scholar
Reis, E.G. (1986a) Age and growth of the marine catfish, Netuma barba (Siluriformes, Ariidae), in the estuary of the Patos Lagoon (Brasil). Fishery Bulletin 84, 679686.Google Scholar
Reis, E.G. (1986b) Reproduction and feeding habits of the marine catfish, Netuma barba (Siluriformes, Ariidae), in the estuary of the Patos Lagoon (Brazil). Atlantica 8, 3555.Google Scholar
Reis-Santos, P., Gillanders, B.M., Tanner, S.E., Vasconcelos, R.P., Elsdon, T.S. and Cabral, H.N. (2012) Temporal variability in estuarine fish otolith elemental fingerprints: implications for connectivity assessments. Estuarine, Coastal and Shelf Science 112, 216224.Google Scholar
Reis-Santos, P., Tanner, S.E., Elsdon, T.S., Cabral, H.N. and Gillanders, B.M. (2013) Effects of temperature, salinity and water composition on otolith elemental incorporation of Dicentrarchus labrax. Journal of Experimental Marine Biology and Ecology 446, 245252.Google Scholar
Reis-Santos, P., Tanner, S.E., França, S., Vasconcelos, R.P., Gillanders, B.M. and Cabral, H.N. (2015) Connectivity within estuaries: an otolith chemistry and muscle stable isotope approach. Ocean & Coastal Management 118, 5159.Google Scholar
Rooker, J.R., Secor, D.H., DeMetrio, G., Kaufman, A.J., Ríos, A.B. and Tičina, V. (2008) Evidence of trans-Atlantic movement and natal homing of bluefin tuna from stable isotopes in otoliths. Marine Ecology Progress Series 368, 231239.Google Scholar
Rooker, J.R., Secor, D.H., Zdanowicz, V.S., De Metrio, G. and Relini, L.O. (2003) Identification of Atlantic bluefin tuna (Thunnus thynnus) stocks from putative nurseries using otolith chemistry. Fisheries Oceanography 12, 7584.Google Scholar
Ruttenberg, B.I. and Warner, R.R. (2006) Spatial variation in the chemical composition of natal otoliths from a reef fish in the Galapagos Islands. Marine Ecology – Progress Series 328, 225236.Google Scholar
Schaffler, J.J., Miller, T.J. and Jones, C.M. (2014) Spatial and temporal variation in otolith chemistry of juvenile Atlantic menhaden in the Chesapeake Bay. Transactions of the American Fisheries Society 143, 10611071.Google Scholar
Schaffler, J.J. and Winkelman, D.L. (2008) Temporal and spatial variability in otolith trace-element signatures of juvenile striped bass from spawning locations in Lake Texoma, Oklahoma–Texas. Transactions of the American Fisheries Society 137, 818829.Google Scholar
Schuchert, P.C., Arkhipkin, A.I. and Koenig, A.E. (2010) Traveling around Cape Horn: otolith chemistry reveals a mixed stock of Patagonian hoki with separate Atlantic and Pacific spawning grounds. Fisheries Research 102, 8086.Google Scholar
Secor, D.H. and Rooker, J.R. (2000) Is otolith strontium a useful scalar of life cycles in estuarine fishes? Fisheries Research 46, 359371.Google Scholar
Seeliger, U., Odebrecht, C. and Castello, J.P. (1997) Subtropical convergence environments: the coast and sea in the Southwestern Atlantic. Berlin: Springer-Verlag, 308 pp.Google Scholar
Simionato, C.G., Luz, M., Tejedor, C., Campetella, C., Guerrero, R. and Moreira, D. (2010) Patterns of sea surface temperature variability on seasonal to sub-annual scales at and offshore the Río de la Plata estuary. Continental Shelf Research 30, 19831997.Google Scholar
Sinclair, D.J., Kinsley, L.P.J. and McCulloch, M.T. (1998) High resolution analysis of trace elements in corals by laser ablation ICP-MS. Geochimica et Cosmochimica Acta 62, 18891901.CrossRefGoogle Scholar
Sturrock, A.M., Trueman, C.N., Darnaude, A.M. and Hunter, E. (2012) Can otolith elemental chemistry retrospectively track migrations in fully marine fishes? Journal of Fish Biology 81, 766795.Google Scholar
Tabouret, H., Bareille, G., Claverie, F., Pécheyran, C., Prouzet, P. and Donard, O.F.X. (2010) Simultaneous use of strontium:calcium and barium:calcium ratios in otoliths as markers of habitat: application to the European eel (Anguilla anguilla) in the Adour basin, South West France. Marine Environmental Research 70, 3545.Google Scholar
Tavares, L.E. and Luque, J.L. (2004) Community ecology of the metazoan parasites of white sea catfish, Netuma barba (Osteichthyes: Ariidae), from the coastal zone of the state of Rio De Janeiro, Brazil. Brazilian Journal of Biology 64, 169176.Google Scholar
Tournois, J., Ferraton, F., Velez, L., McKenzie, D.J., Aliaume, C., Mercier, L. and Darnaude, A.M. (2013) Temporal stability of otolith elemental fingerprints discriminates among lagoon nursery habitats. Estuarine, Coastal and Shelf Science 131, 182193.Google Scholar
Vasconcelos, R.P., Reis-Santos, P., Costa, M.J. and Cabral, H.N. (2011) Connectivity between estuaries and marine environment: integrating metrics to assess estuarine nursery function. Ecological Indicators 11, 11231133.CrossRefGoogle Scholar
Vasconcelos, R.P., Reis-Santos, P., Tanner, S., Maia, A., Latkoczy, C., Günther, D., Costa, M.J. and Cabral, H. (2008) Evidence of estuarine nursery origin of five coastal fish species along the Portuguese coast through otolith elemental fingerprints. Estuarine, Coastal and Shelf Science 79, 317327.CrossRefGoogle Scholar
Velasco, G., Reis, E.G. and Vieira, J.P. (2007) Calculating growth parameters of Genidens barbus (Siluriformes, Ariidae) using length composition and age data. Journal of Applied Ichthyology 23, 6469.Google Scholar
Walther, B.D. and Thorrold, S.R. (2009) Inter-annual variability in isotope and elemental ratios recorded in otoliths of an anadromous fish. Journal of Geochemical Exploration 102, 181186.Google Scholar
Walther, B.D., Thorrold, S.R. and Olney, J.E. (2014) Geochemical signatures in otoliths record natal origins of American shad. Transactions of the American Fisheries Society 137, 5769.Google Scholar
White, J. and Ruttenberg, B. (2007) Discriminant function analysis in marine ecology: some oversights and their solutions. Marine Ecology Progress Series 329, 301305.Google Scholar