Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T01:14:39.336Z Has data issue: false hasContentIssue false

The influence of flow velocity and suspended particulate concentration on net prey capture rates by the scleractinian coral Balanophyllia europaea (Scleractinia: Dendrophylliidae)

Published online by Cambridge University Press:  14 February 2014

Autun Purser*
Affiliation:
Jacobs University, Campus Ring 1, 28759 Bremen, Germany
Covadonga Orejas
Affiliation:
Instituto Español de Oceanografía (IEO), Centro Oceanográfico de Baleares, Moll de Ponent s/n, 07015 Palma de Mallorca, Spain
Annika Moje
Affiliation:
Jacobs University, Campus Ring 1, 28759 Bremen, Germany
Laurenz Thomsen
Affiliation:
Jacobs University, Campus Ring 1, 28759 Bremen, Germany
*
Correspondence should be addressed to: A. Purser, Jacobs University, Campus Ring 1, 28759 Bremen, Germany email: [email protected]

Abstract

Balanophyllia europaea is an endemic Mediterranean sublittoral zooxanthellate solitary coral. Given the broad distribution of the species throughout many areas of the Mediterranean surprisingly little is known of preferred habitat niches or susceptibility of the species to environmental change. In this study we investigated in the laboratory the net prey capture rates of the coral achievable under a range of flow velocities (2.5, 5, 7.5 and 15 cm s−1) and under exposure to different suspended particulate concentrations (0, 7.3 and 170 mg l−1). In recirculation flumes we simulated both commonly occurring and the occasionally high flow velocities and various suspended particulate concentrations reported from the Gulf of Lions (north-west Mediterranean). We then delivered ca 500 A. salina nauplii l−1 as food (Artemia salina nauplii) to the flumes and monitored net prey capture over time. We found net prey capture rates by the species to be highest under flow velocities of 5 cm s−1, with 230 µg C coral individual−1 h−1 achieved. The presence or absence of even environmentally high particulate concentrations (up to 170 mg l−1 resuspended seabed material) did not significantly affect the net prey capture rates achieved by the coral polyps. We found that net prey capture in Balanophyllia europaea is not inhibited during periods of heavy particle exposure, as has been observed in other temperate scleractinian corals. Also, flow velocities of ca ~5 s−1 appear to be optimal for maximum net prey capture by the species.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aleem, A.A and Aleem, E.A.A. (1992) Balanophyllia europaea (Risso, 1826): a scleractinian solitary coral in the southeastern Mediterranean. Journal of Egyptian General Society of Zoology 8, 227233.Google Scholar
Anthony, K.R.N. (2000) Enhanced particle-feeding capacity of corals on turbid reefs (Great Barrier Reef, Australia). Coral Reefs 19, 5967.CrossRefGoogle Scholar
Bell, J.J. and Turner, J.R. (2000) Factors influencing the density and morphometrics of the cup coral Caryophyllia smithii in Lough Hyne. Journal of the Marine Biological Association of the United Kingdom 80, 437441.CrossRefGoogle Scholar
Bell, J.J. (2002) Morphological responses of a cup coral to environmental gradients. Sarsia 87, 319330.CrossRefGoogle Scholar
Berntsson, K.M., Jonsson, P.R., Larsson, A.I. and Holdt, S. (2004) Rejection of unsuitable substrata as a potential driver of aggregated settlement in the barnacle Balanus improvisus. Marine Ecology Progress Series 275, 199210.CrossRefGoogle Scholar
Brooke, S.D., Holmes, M.W. and Young, C.M. (2009) Sediment tolerance of two different morphotypes of the deep-sea coral Lophelia pertusa from the Gulf of Mexico. Marine Ecology Progress Series 390, 137144.CrossRefGoogle Scholar
Brooke, S., Ross, S.W. and Young, C. (2012) Temperature tolerance of the deep-sea coral Lophelia pertusa from the southeastern United States. Deep-Sea Research Part II 92, 240248.CrossRefGoogle Scholar
Buhl-Mortensen, L., Vanreusel, V., Gooday, A.J., Levin, L.A., Priede, I.G., Buhl-Mortensen, P., Gheerardyn, H., King, N.J. and Raes, M. (2010) Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Marine Ecology—An Evolutionary Perspective 31, 2150.CrossRefGoogle Scholar
Cairns, S.D. (2007) Deep-water corals: an overview with special reference to diversity and distribution of deep-water scleractinian corals. Bulletin of Marine Science 81, 311322.Google Scholar
Caroselli, E., Zaccanti, F., Mattioli, G., Falini, G., Levy, O., Dubinsky, Z. and Goffredo, S. (2012) Growth and demography of the solitary scleractinian coral Leptosammia pruvoti along a sea surface temperature gradient in the Mediterranean Sea. PLoS ONE 7, e37848. doi:10.1371/journal.pone.0037848.CrossRefGoogle ScholarPubMed
Coles, S.L. (1969) Quantitative estimates of feeding and respiration for three scleractinian corals. Limnology and Oceanography 14, 949953.CrossRefGoogle Scholar
Connolly, S.R. and Baird, A.H. (2010) Estimating dispersal potential for marine larvae: dynamic models applied to scleractinian corals. Ecology 91, 35723583.CrossRefGoogle ScholarPubMed
Curran, K.J., Hill, P.S., Milligan, T.G., Mikkelsen, O.A., Law, B.A., Madron, X.D. and Bourrin, F. (2007) Settling velocity, effective density, and mass composition of suspended sediment in a coastal bottom boundary layer, Gulf of Lions, France. Continental Shelf Research 27, 14081421.CrossRefGoogle Scholar
Dai, C.F., and Lin, M.C. (1993) The effects of flow on feeding of three gorgonians from southern Taiwan. Journal of Experimental Marine Biology and Ecology 173, 5769.Google Scholar
Dodds, L.A., Roberts, J.M., Taylor, A.C. and Marubini, F. (2007) Metabolic tolerance of the cold-water coral Lophelia pertusa (Scleractinia) to temperature and dissolved oxygen change. Journal of Experimental Marine Biology and Ecology 349, 205214.CrossRefGoogle Scholar
Dunstan, P. (1975) Growth and form in the reef-building coral Montastrea annularis. Marine Biology 21, 101107.CrossRefGoogle Scholar
Durrieu de Madron, X., Nyffeler, F. and Godet, C.H. (1990) Hydrographic structure and nepheloid spatial distribution in the Gulf of Lions continental margin. Continental Shelf Research 10, 915929.CrossRefGoogle Scholar
Durrieu de Madron, X.D., Ferré, B., Corre, G., Grenz, C., Conan, P., Pujo-Pay, M., Buscail, R. and Bodiot, O. (2005) Trawling-induced resuspension and dispersal of muddy sediments and dissolved elements in the Gulf of Lions (NW Mediterranean). Continental Shelf Research 25, 23872409.CrossRefGoogle Scholar
Durrieu de Madron, X., Guieu, C., Sempéré, R., Conan, P., Cossa, D., D'Ortenzio, F., Estournel, C., Gazeau, F., Rabouille, C., Stemmann, L., Bonnet, S., Diaz, F., Koubbi, P., Radakovitch, O., Babin, M., Baklouti, M., Bancon-Montigny, C., Belviso, S., Bensoussan, N., Bonsang, B., Bouloubassi, I., Brunet, C., Cadiou, J.-F., Carlotti, F., Chami, M., Charmasson, S., Charrière, B., Dachs, J., Doxaran, D., Dutay, J.-C., Elbaz-Poulichet, F., Eléaume, M., Eyrolles, F., Fernandez, C., Fowler, S., Francour, P., Gaertner, J.C., Galzin, R., Gasparini, S., Ghiglione, J.-F., Gonzalez, J.-L., Goyet, C., Guidi, L., Guizien, K., Heimbürger, L.-E., Jacquet, S.H.M., Jeffrey, W.H., Joux, F., Le Hir, P., Leblanc, K., Lefèvre, D., Lejeusne, C., Lemé, R., Loÿe-Pilot, M.-D., Mallet, M., Méjanelle, L., Mélin, F., Mellon, C., Mérigot, B., Merle, P.-L., Migon, C., Miller, W.L., Mortier, L., Mostajir, B., Mousseau, L., Moutin, T., Para, J., Pérez, T., Petrenko, A., Poggiale, J.-C., Prieur, L., Pujo-Pay, M., Pulido-Villena, M., Raimbault, P., Rees, A.P., Ridame, C., Rontani, J.-F., Ruiz Pino, D., Sicre, M.A., Taillandier, V., Tamburini, C., Tanaka, T., Taupier-Letage, I., Tedetti, M., Testor, P., Thébault, H., Thouvenin, F.Touratier, J.Tronczynski, C.Ulses, F.Van Wambeke, V.Vantrepotte, S.Vaz, B. and Verney, R. (2011) Marine ecosystems' responses to climatic and anthropogenic forcings in the Mediterranean. Progress in Oceanography 91, 97166.CrossRefGoogle Scholar
Ferré, B., Guizien, K., Madron, X.D., Palanques, A., Guillén, J. and Grémare, A. (2005) Fine-grained sediment dynamics during a strong storm event in the inner-shelf of the Gulf of Lion (NW Mediterranean). Continental Shelf Research 25, 24102427.CrossRefGoogle Scholar
Ferré, B., Madron, X.D., Estournel, C., Ulses, C. and Corre, G. (2008) Impact of natural (waves and currents) and anthropogenic (trawl) resuspension on the export of particulate matter to the open ocean: application to the Gulf of Lion (NW Mediterranean). Continental Shelf Research 28, 20712091.CrossRefGoogle Scholar
Field, A.P. (2013) Discovering statistics using IBM SPSS statistics: and sex and drugs and rock ‘n’ roll. 4th editionLondon: Sage.Google Scholar
Flores, F., Hoogenboom, M.O., Smith, L.D., Cooper, T.F., Abrego, D. and Negri, A.P. (2012) Chronic exposure of corals to fine sediments: lethal and sub-lethal effects. PLoS ONE 7, e37795. doi:10.1371/journal.pone.0037795.CrossRefGoogle Scholar
Freiwald, A., Beuck, L., Rüggeberg, A., Taviani, M. and Hebbeln, D. (2009) The white coral community in the central Mediterranean Sea revealed by ROV surveys. Oceanography 22, 5874.CrossRefGoogle Scholar
Genovese, S.J. and Witman, J.D. (1999) Interactive effect of flow speed and particle concentration on growth rates of an active suspension feeder. Limnology and Oceanography 44, 11201131.CrossRefGoogle Scholar
Goffredo, S., Arnone, S. and Zaccanti, F. (2002) Sexual reproduction in the Mediterranean solitary coral Balanophyllia europaea (Scleractinia, Dendrophyllidae). Marine Ecology Progress Series 229, 8394.CrossRefGoogle Scholar
Goffredo, S., Mezzomonaco, L. and Zaccanti, F. (2004) Genetic differentiation among populations of the Mediterranean hermaphroditic brooding coral Balanophyllia europaea. (Scleractinia: Dendrophylliidae). Marine Biology 145, 1075–83.CrossRefGoogle Scholar
Goffredo, S., Caroselli, E., Pignotti, E., Mattioli, G. and Zaccanti, F. (2007) Variation in biometry and population density of solitary corals with solar radiation and sea surface temperature in the Mediterranean Sea. Marine Biology 152, 351–61.CrossRefGoogle Scholar
Goffredo, S., Caroselli, E., Mattioli, G., Pignotti, E. and Zaccanti, F. (2008) Relationships between growth, population structure and sea surface temperature in the temperate solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Coral Reefs 27, 623632.CrossRefGoogle Scholar
Goffredo, S., Caroselli, E., Mattioli, G., Pignotti, E., Dubinsky, Z. and Zaccanti, F. (2009) Inferred level of calcification decreases along an increasing temperature gradient in a Mediterranean endemic coral. Limnology and Oceanography 234, 930937.CrossRefGoogle Scholar
Guillén, J., Bouriin, F., Palanques, A., Durrieu de Madron, X., Puig, P. and Buscail, R. (2006) Sediment dynamics during wet and dry storm events on the Ter inner shelf (SW Gulf of Lions). Marine Geology 234, 129142.CrossRefGoogle Scholar
Helmuth, B. and Sebens, K. (1993) The influence of coral morphology and orientation to flow on particle capture by the scleractinian coral Agaricia agaricites (Linnaeus). Journal of Experimental Marine Biology and Ecology 165, 251278.CrossRefGoogle Scholar
Hii, Y.S., Soo, C.L. and Liew, H.C. (2009) Feeding of scleractinian coral, Galaxea fascicularis, on Artemia salina nauplii in captivity. Aquaculture International 17, 363376.CrossRefGoogle Scholar
Hughes, R.N. (1980) Optimal foraging theory in the marine context. Oceanography and Marine Biology: an Annual Review 18, 423481.Google Scholar
Kaandorp, J.A., Sloot, P.M.A., Merks, R.M.H., Bak, R.P.M., Vermeij, M.J.A. and Maier, C. (2005) Morphogenesis of the branching reef coral Madracis mirabilis. Proceedings of the Royal Society, B 22, 127133.CrossRefGoogle Scholar
Kleypas, J.A., Mcmanus, J.W. and Menez, L.A.B. (1999) Environmental limits to coral reef development: where do we draw the line? American Zoologist 39, 146159.CrossRefGoogle Scholar
Labarbera, M. (1984) Feeding currents and particle capture mechanisms in suspension feeding animals. American Zoology 24, 7184.CrossRefGoogle Scholar
Lapouyade, A. and Durrieu de Madron, X. (2001) Seasonal variability of the advective transport of particulate matte rand organic carbon in the Gulf of Lion (NW Mediterranean). Oceanologica Acta 24, 295312.CrossRefGoogle Scholar
Larsson, A.I. and Purser, A. (2011) Sedimentation on the cold-water coral Lophelia pertusa: cleaning efficiency from natural sediments and drill cuttings. Marine Pollution Bulletin 62, 11591168.CrossRefGoogle ScholarPubMed
Larsson, A.I., Van Oevelen, D., Purser, A. and Thomsen, L. (2013) Tolerance to long-term exposure of suspended benthic sediments and drill cuttings in the cold-water coral Lophelia pertusa. Marine Pollution Bulletin 70, 176188.CrossRefGoogle ScholarPubMed
Leversee, G.J. (1976) Flow and feeding in fan-shaped colonies of the gorgonian coral, Leptogorgia. Biological Bulletin. Marine Biological Laboratory, Woods Hole 151, 344356.CrossRefGoogle ScholarPubMed
Lewis, J.B. and Price, W.S. (2009) Feeding mechanisms and feeding strategies of Atlantic reef corals. Journal of Zoology 176, 527544.CrossRefGoogle Scholar
Mills, M.M. and Sebens, K.P. (2004) Ingestion and assimilation of nitrogen from benthic sediments by three species of coral. Marine Biology 145, 10971106.CrossRefGoogle Scholar
Monismith, S.G. (2007) Hydrodynamics of coral reefs. Annual Review of Fluid Mechanics 39, 3755.CrossRefGoogle Scholar
Naceur, H.B., Jenhani, A.B.R., El cafsi, M. and Romdhane, M.S. (2008) Determination of biological characteristics of Artemia salina (Crustacea: Anostraca) population from Sabkhet Sijoumi (NE Tunisia). Transitional Waters Bulletin 3, 6574.Google Scholar
Naumann, M.S., Richter, C., Zibdah, M. and Wild, C. (2009) Coral mucus as an efficient trap for picoplanktonic cyanobacteria: implications for pelagic–benthic coupling in the reef ecosystem. Marine Ecology Progress Series 385, 6576.CrossRefGoogle Scholar
Palanques, A.I., de Madron, X.D., Puig, P., Fabres, J., Guillén, J., Calafat, A., Canals, M., Heussner, S. and Bonnin, J. (2006) Suspended sediment fluxes and transport processes in the Gulf of Lions submarine canyons. The role of storms and dense water cascading. Marine Geology 234, 4361.CrossRefGoogle Scholar
Pearson, T.H., and Rosenberg, R. (1978) Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology: an Annual Review 16, 229311.Google Scholar
Pike, S.M. and Moran, S.B. (1997) Use of Poretics(R) 0.7 mm pore size glass fiber filters for the determination of particulate organic carbon and nitrogen in seawater and freshwater. Marine Chemistry 57, 355360.CrossRefGoogle Scholar
Puig, P., Palanques, A., Orange, D.L., Lastras, G. and Canals, M. (2008) Dense shelf water cascades and sedimentary furrow formation in the Cap de Creus Canyon, northwestern Mediterranean Sea. Continental Shelf Research 28, 20172030.CrossRefGoogle Scholar
Purser, A., Larsson, A.I., Thomsen, L. and van Oevelen, D. (2010) The influence of flow velocity and food concentration on Lophelia pertusa (Scleractinia) zooplankton capture rates. Journal of Experimental Marine Biology and Ecology 395, 5562.CrossRefGoogle Scholar
Randall, C.J. and Szmant, A.M. (2009) Elevated temperature reduces survivorship and settlement of the larvae of the Caribbean scleractinian coral, Favia fragum (Esper). Coral Reefs 28, 537545.CrossRefGoogle Scholar
Riisgård, H.U. and Larsen, P.S. (2010) Particle capture mechanisms in suspension-feeding aggregates. Marine Ecology Progress Series 418, 255293.CrossRefGoogle Scholar
Roberts, J.M., Wheeler, A., Freiwald, A. and Cairns, S. (2009) Cold-water corals. The biology and geology of deep-sea coral habitats. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Rosenberg, R., Nilsson, H.C., Grémare, A. and Amorouroux, J-M. (2003) Effects of demersal trawling on marine sedimentary habitats analysed by sediment profile imagery. Journal of Experimental Marine Biology and Ecology 285–286, 465477.CrossRefGoogle Scholar
Rosenfeld, M., Bresler, V. and Abelson, A. (1999) Sediment as a possible source of food for corals. Ecology Letters 2, 345348.CrossRefGoogle Scholar
Sebens, K.P. and Johnson, A.S. (1991) Effects of water movement on prey capture and distribution of reef corals. Hydrobiologia 226, 91101.CrossRefGoogle Scholar
Shimeta, J. and Jumars, P.A. (1991) Physical mechanisms and rates of particle caputre by suspension feeders. Oceanography and Marine Biology: an Annual Review 29, 191257.Google Scholar
Shimeta, J. and Koehl, M.A.R. (1997) Mechanisms of particle selection by tentaculate suspension feeders during encounter, retention, and handling. Journal of Experimental Marine Biology and Ecology 209, 4773.CrossRefGoogle Scholar
Skliris, N., Sofianos, S., Gkanasos, A., Mantziafou, A., Vervatis, V., Axaopoulos, P. and Lascaratos, A. (2012) Decadal scale variability of sea surface temperature in the Mediterranean Sea in relation to atmospheric variability. Ocean Dynamics. doi: 10.1007/s10236-011-0493-5.CrossRefGoogle Scholar
Stafford-Smith, M.G. and Ormond, R.F.G. (1992) Sediment-rejection mechanisms of 42 species of Australian scleractinian corals. Australian Journal of Marine and Freshwater Research 43, 683705.CrossRefGoogle Scholar
Taviani, M., Freiwald, A. and Zibrowius, H. (2005) Deep coral growth in the Mediterranean Sea: an overview. In Freiwald, A. and Roberts, J.M. (eds) Cold-water corals and ecosystems. Heidelberg, Berlin: Springer-Verlag, pp. 136156.Google Scholar
Tracey, D.M., Rowden, A.A., Mackay, K.A. and Compton, T. (2011) Habitat-forming cold-water corals show affinity for seamounts in the New Zealand region. Marine Ecology Progress Series 430, 122.CrossRefGoogle Scholar
Tsounis, G., Orejas, C., Reynaud, S., Gili, J.M., Allemand, D. and Ferrier-Pages, C. (2010) Prey-capture rates of four Mediterranean cold water corals. Marine Ecology Progress Series 398, 149155.CrossRefGoogle Scholar
Ulses, C., Estourmel, C., Puig, P., de Durrieu, X.M. and Marsaleix, P. (2008) Dense shelf water cascading in the northwestern Mediterranean during the cold winter 2005: quantification of the export through the Gulf of Lion and the Catalan margin. Geophysical Research Letters 35, L07610, doi:10.1029/2008GL033257.CrossRefGoogle Scholar
Van Oevelen, D., Duineveld, G., Lavaleye, M., Mienis, F., Soetaert, K. and Heip, C.H.R. (2009) The cold-water coral community as a hot spot for carbon cycling on the continental margins: a food-web analysis from Rockall Bank (northeast Atlantic). Limnology and Oceanography 54, 18291844.CrossRefGoogle Scholar
Wagner, H., Purser, A., Thomsen, L., Jesus, C.C. and Lundälv, T. (2011) Particulate organic matter fluxes and hydrodynamics at the Tisler cold-water coral reef. Journal of Marine Systems 85, 1929.CrossRefGoogle Scholar
Weber, M., Lott, C. and Fabricius, K.E. (2006) Sedimentation stress in a scleractinian coral exposed to terrestrial and marine sediments with contrasting physical, organic and geochemical properties. Journal of Experimental Marine Biology and Ecology 336, 1832.CrossRefGoogle Scholar
Wild, C., Rasheed, M., Werner, U., Franke, U., Johnstone, R. and Huettel, M. (2004) Degradation and mineralization of coral mucus in reef environments. Marine Ecology Progress Series 267, 159171.CrossRefGoogle Scholar
Wildish, D. and Kristmanson, D. (2005) Suspension feeders and flow. Cambridge: Cambridge University Press, 409pp.Google Scholar
Wilson, J.B. (1979) ‘Patch’ development of the deep-water coral Lophelia pertusa (L.) on Rockall Bank. Journal of the Marine Biological Association of the United Kingdom 59, 165177.CrossRefGoogle Scholar
Wilson, J.R. and Harrison, P.L. (1998) Settlement-cometency periods of larvae of three species of scleractinian corals. Marine Biology 131, 339345.CrossRefGoogle Scholar
Wijgerde, T., Diantari, R., Lewaru, M.W., Verreth, J.A.J. and Osinga, R. (2011) Extracoelenteric zooplankton feeding is a key mechanism of nutrient acquisition for the scleractinian coral Galaxea fascicularis. Journal of Experimental Biology 214, 33513357.CrossRefGoogle ScholarPubMed
Wijgerde, T., Spijkers, P., Karruppannan, E., Verreth, J.A.J. and Osinga, R. (2012) Water flow affects zooplankton feeding by the scleractinian coral Galaxea fascicularis on a polyp at colony level. Journal of Marine Biology 2012, Article ID 854849. doi:10.1155/2012/854849.CrossRefGoogle Scholar
Yahel, R., Yahel, G. and Genin, A. (2002) Daily cycles of suspended sand at coral reefs. A biological control. Limnology and Oceanography 47, 10711083.CrossRefGoogle Scholar
Zibrowius, H. (1980) Les Scléractiniaires de la Méditerranée et de l'Atlantique nord-oriental. Mémoires de l'Institut Océanographique, 11, 1284.Google Scholar