Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T08:14:23.996Z Has data issue: false hasContentIssue false

Host Defence Reactions of the Shore Crab, Carcinus Maenas (L.), in Vitro

Published online by Cambridge University Press:  11 May 2009

Valerie J. Smith
Affiliation:
Department of Zoology, UniversityCollege of Swansea, Swansea, SA PP
N. A. Ratcliffe
Affiliation:
Department of Zoology, UniversityCollege of Swansea, Swansea, SA PP

Extract

The Crustacea play an important economic role in the marine and aquatic environments not only as a food source but also in the productivity of the fisheries. Exploitation of these resources has led to a need for intensive culture methods which impose physiological stress on the animals and consequently increase the incidence of disease. The need to reduce the lethal and debilitating effects of pathogens has stimulated a renewed interest in the defence mechanisms of the Crustacea.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, R. S. & Good, A. R. 1976. Opsonic involvement in phagocytosis by mollusc hemocytes. Journal of Invertebrate Pathology, 27, 57&64CrossRefGoogle ScholarPubMed
Anderson, R. S.Holmes, B. & Good, R. A. 1973. In vitro bactericidal capacity of Blaberus craniifer hemocytes. Journal of Invertebrate Pathology 22, 127135.CrossRefGoogle Scholar
Bang, F. B. 1967. Blood clot formation in the antenna of the hermit crab, Pagurus longicarpus. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 133, 456457.Google Scholar
Cantacuzene, J. 1923. Le probleme de l'immunite chez les invertébres. Compte rendu des seances de la Societe de biologie, 88 (75 Anniversaire suppl.), 48119.Google Scholar
Drach, P. 1939. Mue et cycle d'intermue chez les Crustaces Decapodes. Annales de Vlnstitute oce'anographique, 19, 103391.Google Scholar
Foley, D. A. & Cheng, T. C. 1975. A quantitative study of phagocytosis by hemolymph cells of the pelecypods Crassostrea virginica and Mercenaria mercenaria. Journal of Invertebrate Pathology, 25, 189197.CrossRefGoogle ScholarPubMed
Fontaine, C. T. & Lightner, D. V. 1974. Observations on the phagocytosis and elimination of carmine particles injected into the abdominal musculature of the white shrimp, Penaeus setiferus. Journal of Invertebrate Pathology, 24, 141–18.CrossRefGoogle ScholarPubMed
George, W. C. & Nichols, J. 1948. A study of the blood of some Crustacea. Journal of Morphology, 83, 425443.CrossRefGoogle ScholarPubMed
Gingrich, R. E. 1964. Acquired humoral immune response of the large milkweed bug, Oncopeltus fasciatus (Dallas) to injected materials. Journal of Insect Physiology, 10, 179194.CrossRefGoogle Scholar
Hardy, W. B. 1892. Blood corpuscles of the Crustacea, together with a suggestion as to the origin of crustacean fibrin-ferment. Journal of Physiology, 13, 165190.CrossRefGoogle Scholar
Johnson, P. T. 1976. Bacterial infection in the blue crab, Callinectes sapidus, course of infection and histopathology. Journal of Invertebrate Pathology, 28, 2536.CrossRefGoogle Scholar
Johnston, M. A.Elder, H. Y. & Spencer Davies, P. 1973. Cytology of Carcinus haemocytes and their function in carbohydrate metabolism. Comparative Biochemistry and Physiology, 46A, 569581.CrossRefGoogle Scholar
Kitzrow, D. & Blobel, H. 1976. Possible relationship between bacterial surface structures, immune-adherance, chemotaxis and phagocytosis. Zentralblatt fÜr Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, 234, 129135.Google ScholarPubMed
Mckay, D. & Jenkin, C. R. 1970a. Immunity in the invertebrates. The fate and distribution of bacteria in text-abstract and immunized crayfish (Parachaeraps bicarinatus). Australian Journal of Experimental Biology and Medical Science, 48, 599607.CrossRefGoogle Scholar
Mckay, D. & Jenkin, C. R. 1970b. Immunity in the invertebrates. The role of serum factors in phagocytosis of erythrocytes by the haemocytes of crayfish (Parachaeraps bicarinatus). Australian Journal of Experimental Biology and Medical Science, 48, 130170.Google ScholarPubMed
Maynard, D. M. 1960. Circulation and heart function. In The Physiology of Crustacea, vol. 1 (ed. T. H. Waterman), pp. 161226. New York: Academic Press.Google Scholar
Miller, V. H.Ballback, S. R.Pauley, G. B. & Krassner, S. M., 1972. A preliminary physio-chemical characterisation of an agglutinin found in the hemolymph of the crayfish Procambarus clarkii. Journal of Inverbetrate Pathology, 19, 8398.CrossRefGoogle Scholar
Paterson, W. D. & Stewart, J. E. 1974. In vitro phagocytosis by hemocytes of the American lobster (Homarus americanus). Journal of the Fisheries Research Board of Canada, 31, 10511056.CrossRefGoogle Scholar
Paterson, W. D.Stewart, J. E. & Zwicker, B. M. 1976. Phagocytosis as a cellular immune response mechanism in the American lobster, Homarus americanus. Journal of Invertebrate Pathology, 27, 95104.CrossRefGoogle ScholarPubMed
Pauley, G. B.Krassner, S. M. & Chapman, F. A. 1971. Bacterial clearance in the California sea hare, Aplysia californica. Journal of Invertebrate Pathology, 18, 227239.CrossRefGoogle ScholarPubMed
Prowse, R. H. & Tait, N. N. 1969. In vitro phagocytosis by amoebocytes from the hemolymph of Helix aspersa. I. Evidence for opsonic factors in the serum. Immunology, 17, 437443.Google Scholar
Rabinovitch, M. 1967. Dissociation of the attachment and ingestion phases of phagocytosis by macrophages. Experimental Cell Research, 46, 1928.CrossRefGoogle ScholarPubMed
Rabinovitch, M. 1968. The effect of antiserum on the attachment of modified erythrocytes to text-abstract or to trypsinized macrophages. Proceedings of the Society for Experimental Biology and Medicine, 127, 351355.CrossRefGoogle Scholar
Rabinovitch, M. 1969. Phagocytosis of modified erythrocytes by macrophages and L2 cells. Experimental Cell Research, 56, 326332.CrossRefGoogle ScholarPubMed
Schapiro, H. C., 1975. Immunity in decapod crustaceans. American Zoologist, 15, 1320.CrossRefGoogle Scholar
Sewell, M. T. 1955. Lipoprotein cells in the blood of Carcinus maenas, and their cycle of activity connected with the moult. Quarterly Journal of Microscopical Science. 46, 7383.Google Scholar
Siegel, S. 1956. Nonparametric Statistics for the Behavioral Sciences. 312 pp. McGraw-Hill & Kogakusha Co. Ltd.Google Scholar
Smith, V. J. & Ratcliffe, N. A. 1976. Defensive reactions of the shore crab, Carcinus maenas, to foreign particles. In Proceedings of the 1st International Colloquium on Invertebrate Pathology, Kingston, Ontario, Canada, pp. 312313.Google Scholar
Stinson, M. W. & Van Oss, C. J. 1971. Immunoglobulins as aspecific opsonins. II. The influence of specific and aspecific immunoglobulins on the in vitro phagocytosis of noncapsulated, capsulated and decapsulated bacteria by human neutrophils. Journal of the Reticuloendothelial Society, 9, 503512.Google ScholarPubMed
Stuart, A. E. 1968. The reticuloendothelial apparatus of the lesser octopus (Eledone cirrosa). Journal of Pathology and Bacteriology, 96, 401412.CrossRefGoogle ScholarPubMed
Tait, J. 1911. Types of crustacean blood coagulation. Journal of the Marine Biological Association of the United Kingdom, 9, 191198.CrossRefGoogle Scholar
Tait, J. & Gunn, J. D. 1918. The blood of Astacus fluviatilis a study in crustacean blood with special reference to coagulation and phagocytosis. Quarterly Journal of Experimental Physiology, 12, 3580.CrossRefGoogle Scholar
Tripp, M. R. 1966. Haemagglutinins in the blood of the oyster (Crassostrea virginica). Journal of Invertebrate Pathology, 8, 478484.CrossRefGoogle ScholarPubMed
Tyson, C. J. & Jenkin, C. R. 1973. The importance of opsonic factors in the removal of bacteria from the circulation of the crayfish (Parachaeraps bicarinatus). Australian Journal of Experimental Biology and Medical Science, 51, 609615.CrossRefGoogle ScholarPubMed
Tyson, C. J. & Jenkin, C. R. 1974. Phagocytosis of bacteria in vitro by haemocytes from the crayfish (Parachaeraps bicarinatus). Australian Journal of Experimental Biology and Medical Science, 52, 341348.CrossRefGoogle ScholarPubMed
Van Oss, C. J. & Stinson, M. W. 1970. Immunoglobulins as aspecific opsonins. I. Influence of polyclonal and monoclonal immunoglobulins on the in vitro phagocytosis of latex particles and staphylococci by human neutrophils. Journal of the Reticuloendothelial Society, 8, 397406.Google ScholarPubMed
Williams, A. & Lutz, P. L. 1975. Blood cell types in Carcinus maenas and their physiological role. Journal of the Marine Biological Association of the United Kingdom, 55, 671674.CrossRefGoogle Scholar
Wood, E. J. F. 1965. Marine Microbial Ecology. Modern Biological Studies. 243 pp. London: Chapman and Hall Ltd.Google Scholar
Wood, P. J. & Visentin, L. P. 1967. Histological and histochemical observations of hemolymph cells in the crayfish Orconectes virilis. Journal of Morphology, 123, 559567.CrossRefGoogle ScholarPubMed