Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T14:12:43.900Z Has data issue: false hasContentIssue false

Embryonic respiration in the dogfish (Scyliorhinus canicula L.)

Published online by Cambridge University Press:  11 May 2009

Jose Manuel Diez
Affiliation:
Department of Biology, Faculty of Sciences, University of Valladolid, Spain
John Davenport
Affiliation:
Animal Biology Group, Marine Science Laboratories, Menai Bridge, Gwynedd LL59 5EH

Extract

Dogfish eggs would appear to be eminently suitable for physiological study because of their large size, easy availability (egg laying seems to be continuous throughout the year except for a break during the autumn (Craik, 1978)); their long lasting development (between 240 and 300 days from laying to hatching (Foulley & Mellinger, 1980a)); the clear separation between yolk-sac and embryo, and the fact that eggs are normally laid in pairs (opening up the possibility of keeping one of them as control whilst experimenting upon the other).

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bayne, B. L. & Newell, R. C., 1983. Physiological energetics of marine molluscs. In The Mollusca, vol. 4, part 1 (ed. Saleuddin, A. S. M. and Wilbur, K. M.), pp. 407515. New York: Academic Press.Google Scholar
Butler, P. J. & Taylor, E. W., 1971. Response of the dogfish (Scyliorhinus canicula L.) to slowly induced and rapidly induced hypoxia. Comparative Biochemistry and Physiology, 39A, 307323.CrossRefGoogle Scholar
Butler, P. J. & Taylor, E. W., 1975. The effect of progressive hypoxia on respiration in the dogfish (Scyliorhinus canicula) at different seasonal termperatures. Journal of Experimental Biology, 63, 117130.Google Scholar
Butler, P. J., Taylor, E. W. & Davison, W., 1979. The effect of long term, moderate hypoxia on acid-base balance, plasma catecholamines and possible anaerobic end products in the unrestrained dogfish Scyliorhinus canicula. Journal of Comparative Physiology, 132, 297303.CrossRefGoogle Scholar
Craik, J. A., 1978. An annual cycle of vitellogenesis in the elasmobranch Scyliorhinus canicula. Journal of the Marine Biological Association of the United Kingdom, 58, 719726.CrossRefGoogle Scholar
Dabrowski, K., Kaushik, S. J. & Luquet, P., 1984. Metabolic utilization of body stores during early life of whitefish, Coregonus lavaretus L. Journal of Fish Biology, 24, 721729.Google Scholar
Davenport, J., 1983. Oxygen and the developing eggs and larvae of the lumpfish, Cyclopterus lumpus. Journal of the Marine Biological Association of the United Kingdom, 63, 633640.Google Scholar
Davenport, J. & Lonning, S., 1980. Oxygen uptake in developing eggs and larvae of the cod, Gadus morhua L. Journal of Fish Biology, 16, 249—256.Google Scholar
Elliot, J. M. & Davison, W., 1975. Energy equivalents of oxygen consumption in animal energetics. Oecologia, 19, 195201.Google Scholar
Foulley, M.-M. & Mellinger, J., 1980 a. Étude chronologique, structurale at biométrique de l'oeuf et de son développement chez la petite rousette (Scyliorhinus canicula) élevée en eau de mer artificelle. Reproduction, Nutrition, Developpement, 20, 18351848.Google Scholar
Foulley, M.-M. & Mellinger, J., 1980 b. La diffusion de l'eau tritiée, de l'urée-14C et d'autres substances à travers la coque de l'oeuf de roussette, Scyliorhinus canicula. Compte rendu hebdomadaire des seances de l' Académie des sciences (sér. D), 290, 427430.Google Scholar
Foulley, M.-M., Wrisez, F. & Mellinger, J., 1981. Observations sur la perméabilité asymétrique de la coque de l'oeuf de roussette (Scyliorhinus canicula). Compte rendu hebdomadaire des séances de l' Academie des sciences (sér. III), 293, 389394.Google Scholar
Gilbert, P. W., Mathewson, R. F. & Rall, D. P., 1967. Sharks, Skates and Rays. Baltimore: Johns Hopkins Press.Google Scholar
Hall, J. L. & Baker, D. A., 1977. Cell Membrane and Ion Transport. London: Longman.Google Scholar
Hamor, T. & Garside, E. T., 1978. Hourly and total oxygen consumption by ova of Atlantic salmon, Salmo salar L., during embryogenesis, at two temperatures and three levels of dissolved oxygen. Canadian Journal of Zoology, 57, 11961200.Google Scholar
Hornsey, D. H., 1978. Permeability coefficients of the egg-case membrane of Scyliorhinus canicula L. Experientia, 34, 15961597.Google Scholar
Hughes, G. M. & Umezawa, S. I., 1968. Oxygen consumption and gill water flow in the dogfish Scyliorhinus canicula L. Journal of Experimental Biology, 49, 557564.Google Scholar
Johnston, I.-A. & Bernard, L. M., 1983. Utilization of the ethanol pathway in carp following exposure to anoxia. Journal of Experimental Biology, 104, 7378.CrossRefGoogle Scholar
Knight, D. P. & Hunt, S., 1974. Fibril structure of collagen in egg capsule of dogfish. Nature, London, 249, 379380.Google Scholar
Mellinger, J., 1983. Egg-case diversity among dogfish, Scyliohinus canicula L.: a study of egg laying rate and nidamental gland secretory activity. Journal of Fish Biology, 22, 8390.Google Scholar
Needham, J. & Needham, D. M., 1930. Nitrogen-excretion in selachian ontogeny. Journal of Experimental Biology, 7, 718.Google Scholar
Ogden, E., 1945. Respiratory flow in Mustelus. American Journal of Physiology, 145, 134139.CrossRefGoogle ScholarPubMed
Piiper, J., Baumgarten, D. & Meyer, M., 1970. Effects of hypoxia upon respiration and circulation in the dogfish Scyliorhinus stellaris. Comparative Biochemistry and Physiology, 36, 513—520.Google Scholar
Prosser, C. L., 1955. Physiological variation in animals. Biological Reviews, 30, 229262.CrossRefGoogle Scholar
Prosser, C. L. & Brown, F. A., 1961. Comparative Animal Physiology. Philadelphia: Saunders.Google Scholar
Rusaouen, M., Pujol, J. P., Bocquet, J., Veillard, A. & Borel, J. P., 1976. Evidence of collagen in the capsule of the dogfish, Scyliorhinus canicula. Comparative Biochemistry and Physiology, 53B, 539543.Google Scholar
Satchell, G. H., 1961. The response of the dogfish to anoxia. Journal of Experimental Biology, 38, 531543.CrossRefGoogle Scholar
Shoubridge, E. A. & Hochachka, P. W., 1980. Ethanol: novel end product of vertebrate anaerobic metabolism. Science, New York, 209, 308309.Google Scholar
Sigma, , 1984. The Quantitative Determination of Pyruvic Acid and Lactic Acid in Whole Blood at 340 nm. St Louis, U.S.A.: Sigma Chemical Co. [Sigma Technical Bulletin, 726 UV and 826 UV.]Google Scholar
Spitzer, K. W., Marvin, D. E. & Heath, A. G., 1969. The effect of temperature on the respiratory and cardiac response of the bluegill sunfish to hypoxia. Comparative Biochemistry and Physiology, 30, 8390.Google Scholar
Thillart, G.Den, Van, Berge-Henegouwen, M. Van & Kesbeke, F., 1983. Anaerobic metabolism of goldfish, Carassius auratus L.: ethanol and CO2 excretion rates and anoxia tolerance at 20, 10 and 5 °C. Comparative Biochemistry and Physiology, 76A, 295300.Google Scholar