Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T20:34:34.777Z Has data issue: false hasContentIssue false

The effect of β-alanine on the concentration of taurine and other free amino acids during osmotic stress of Mytilus galloprovincialis

Published online by Cambridge University Press:  11 May 2009

G. Sansone
Affiliation:
Dipartimento di Fisiologia Generale e Ambientale, Universita di Napoli, Via Mezzocannone 8, 80134 Napoli, Italy
M. Cotugno
Affiliation:
Dipartimento di Fisiologia Generale e Ambientale, Universita di Napoli, Via Mezzocannone 8, 80134 Napoli, Italy
I. Cosma
Affiliation:
Dipartimento di Fisiologia Generale e Ambientale, Universita di Napoli, Via Mezzocannone 8, 80134 Napoli, Italy
P. Zatta
Affiliation:
Centro CNR per lo Studio della Biochimica e della Fisiologia delle Emocianine ed altre metallo-proteine, Via Loredan 10, 35131 Padova, Italy

Abstract

The effect of β-alanine on the concentration of taurine and other free amino acids (FAA) in different osmotic conditions in Mytilus galloprovincialis have been investigated. Significant variation of the concentration of FAA as a function of the salinity have been observed.

β-alanine incorporation decreases the level of cysteic acid and taurine as well as the level of other FAA.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J. A. & Garrett, M. R., 1971. Taurine in marine invertebrates. Advances in Marine Biology, 9, 205253.CrossRefGoogle Scholar
Awapara, J., 1962. Free amino acids in invertebrates: a comparative study of their distribution and metabolism in amino acid pools. In Amino Acid Pools (ed. Holden, J.), pp. 158175. New York: Elsevier.Google Scholar
Bedford, J. J., 1971. Osmoregulation in Melanopsis trifasciata Gray 1843. III. The intracellular nitrogenous compounds. Comparative Biochemistry and Physiology, 40 A, 899910.Google Scholar
Bishop, S. H., Dale, E., Greenwalt, G. & Burcham, J. M., 1981. Amino acid cycling in ribbed mussel tissues subjected to hyperosmotic shock. Journal of Experimental Zoology, 215, 277287.CrossRefGoogle Scholar
Bishop, S. H., Lehman, L. E. & Burcham, J. M., 1983. Amino acid metabolism in molluscs. In The Mollusca, vol. 1 (ed. Hochachka, P. W.), pp. 243326. New York: Academic Press.Google Scholar
Bricteux-Grégoire, S., Duchâteau-Bosson, G., Jeuniaux, C. & Florkin, M., 1964. Constituants osmotiquement actifs des muscles adducteurs de Mytilus edulis adaptée à l'eau de mer ou à l'eau saumâtre. Archives international de physiologie et de biochimie, 72, 116123.CrossRefGoogle Scholar
Cavallini, D., Gaul, G. E. & Zappia, V. (ed.), 1980. Natural Sulfur Compounds, Novel Biochemical and Structural Aspects. New York: Plenum Press.Google Scholar
Costa, C. S., Pierce, S. K. & Warren, M. K., 1980. The intracellular mechanism of salinity tolerance in polychaetes: volume regulation by isolated Glycera dibranchiata red coelomocytes. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 159, 626655.Google Scholar
Gilles, R., 1972. Osmoregulation in three molluscs:Acanthochitona discrepans (Brown), Glycymeris glycymeris (L.) and Mytilus edulis (L.). Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 142, 2535.Google Scholar
Gilles, R., 1977. Effects of osmotic stresses on the proteins concentration and pattern of Eriocheir sinensis blood. Comparative Biochemistry and Physiology, 56 A, 109114.CrossRefGoogle ScholarPubMed
Gilles, R., 1978. Intracellular free amino acids and cell volume regulation during osmotic stresses. In Osmotic and Volume Regulation. Proceedings of the 11th Benzon Symposium (ed. Jergensen, C. B. and Skadhauge, E.), pp. 471491. Copenhagen: Munksgaard.Google Scholar
Gilles, R., 1979. Intracellular organic effectors. In Mechanisms of Osmoregulation in Animals: Maintenance of Cell Volume (ed. Gilles, R.), pp. 111154. New York: Wiley.Google Scholar
Gilles, R., & Pequeux, R., 1981. Cell volume regulation in crustaceans: relationship between mechanisms for controlling the osmolality of extracellular and intracellular fluids. Journal of Experimental Zoology, 215, 351362.Google Scholar
Grossfeld, R. M.J 1975. Beta-alanine distribution in the lobster, Homarus americanus. Comparative Biochemistry and Physiology, 51 C, 1—4.Google Scholar
Hempling, H. G., Cicoria, A. D., Dupre, A. M. & Thompson, S., 1981. State of water and electrolytes in mammalian cells during maturation and differentiation. Journal of Experimental Zoology, 215, 259276.CrossRefGoogle ScholarPubMed
Henry, R. P., Mangum, C. P. & Webb, K. L., 1981. Salt and water balance in the oligohaline clam, Rangia cuneata. II. Accumulation of intracellular free amino acids during high salinity adaptation. Journal of Experimental Zoology, 211, 1124.Google Scholar
Hochachka, P. W. & Somero, G. N., 1984. Biochemical adaptation: basic mechanisms and strategies. In Biochemical Adaptation, pp. 114. Princeton, New Jersey: Princeton University Press.Google Scholar
Huxtable, R. S., 1980. Regulation and function of taurine in the heart and other organs. In Natural Sulfur Compounds (ed. Cavallini, D., Gaul, G. E. and Zappa, V.), pp. 277306. New York: Plenum Press.Google Scholar
Jacobsen, J. G. & Smith, L. H., 1968. Biochemistry and physiology of taurine and taurine derivatives. Physiological Reviews, 48, 424511.Google Scholar
Jeffries, H. P., 1972. A stress syndrome in the hard clam Mercenaria mercenaria. Journal of Invertebrate Pathology, 20, 242251.Google Scholar
Kaneshiro, E. S., Holz, G. J. & Dunham, P. B., 1969. Osmoregulation in a marine ciliate. Miamiensis avidus. II. Regulation of intracellular free amino acids. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 137, 161169.CrossRefGoogle Scholar
Kévers, C, Péqueux, R. & Gilles, R., 1979. Effects of hypo- and hyperosmotic shocks on the volume and ions content of Carcinus maenas isolated axons. Comparative Biochemistry and Physiology, 64 A, 427–31.Google Scholar
Lange, R., 1963. The osmotic function of amino acids and taurine in the mussel, Mytilus edulis. Comparative Biochemistry and Physiology, 10, 173179.CrossRefGoogle ScholarPubMed
Mangum, C. P., Silver, S. V., Harris, L. Y., Towle, D. W. & Krall, A. R., 1976. The relationship between blood pH, ammonia excretion and adaptation to low salinity in the blue crab Callinecies sapidus. Journal of Experimental Zoology, 195, 129136.Google Scholar
Oglesby, L. C, 1981. Volume regulation in aquatic invertebrates. Journal of Experimental Zoology, 215,289301.Google Scholar
Otto, J. & Pierce, S. K., 1981. A critical level of blood Ca is required by bivalves for amino acid regulation in hyperosmotic salinity. Marine Biology, 61, 193198.CrossRefGoogle Scholar
Pierce, S. K., 1982. Invertebrate cell volume control mechanism: a coordinated use of intracellular amino acids and inorganic ions as osmotic solute. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 163, 405419.Google Scholar
Pierce, S. K. & Greenberg, M. J., 1973. The initiation and control of free amino acid regulation of cell volume in salinity marine bivalve. Journal of Experimental Biology, 59, 435446.Google Scholar
Pierce, S. K. & Greenberg, M. J., 1976. Hypoosmotic cell volume regulation in marine bivalves: the effects of membrane potential change and metabolic inhibition. Physiological Zoölogy, 49, 417424.Google Scholar
Rorive, G. & Gilles, R., 1979. Intracellular osmotic effectors. In The Mechanism of Osmoregulation in Animals: Maintenance of Cell Volume (ed. Gilles, R.), pp. 83109. New York: Wiley.Google Scholar
Schon, F. & Kelly, J. S., 1975. Selective uptake of [3H]β-alanine by glia: association with the glial uptake system for GABA. Brain Research, 86, 243257.Google Scholar
Scriver, C. R., & Perry, T. L., 1972. Disorders ofβ-alanine and carnosine metabolism. In The Metabolic Basis of Inherited Disease, 3rd ed. (ed. Stanbury, J. B., Wyngaarden, J. B. and Frederickson, D. S.), pp. 477490. New York: McGraw-Hill.Google Scholar
Sonnhof, U., Grafe, P., Krumnil, G., Linder, M. & Schindler, L., 1975. Inhibitory postsynaptic actions of taurine, gamma-aminobutyric acid and other amino acids on moto-neurons of isolated frog spinal cord. Brain Research, 100, 327341.Google Scholar
Thurston, J. H., Hauhart, R. E. & Dirco, J. A., 1980. Taurine: a role in osmotic regulation of mammalian brain and possible clinical significance. Life Sciences, 26, 15611568.Google Scholar
Thurston, J. H., Hauhart, R. E. & Naccarato, E. G., 1981. Taurine: possible role in osmotic regulation of mammalian heart. Science, New York, 214, 13731374.Google Scholar