Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-19T02:07:01.312Z Has data issue: false hasContentIssue false

Diet and trophic position of the devil rays Mobula thurstoni and Mobula japanica as inferred from stable isotope analysis

Published online by Cambridge University Press:  02 June 2010

Laura Sampson*
Affiliation:
Centro Interdisciplinario de Ciencias Marinas, AV IPN s/n, Apartado Postal 592, La Paz, BCS, MexicoCP 23000
Felipe Galván-Magaña
Affiliation:
Centro Interdisciplinario de Ciencias Marinas, AV IPN s/n, Apartado Postal 592, La Paz, BCS, MexicoCP 23000
Roxana De Silva-Dávila
Affiliation:
Centro Interdisciplinario de Ciencias Marinas, AV IPN s/n, Apartado Postal 592, La Paz, BCS, MexicoCP 23000
Sergio Aguíñiga-García
Affiliation:
Centro Interdisciplinario de Ciencias Marinas, AV IPN s/n, Apartado Postal 592, La Paz, BCS, MexicoCP 23000
John B. O'Sullivan
Affiliation:
Monterey Bay Aquarium, 886 Cannery Row, Monterey, CA 93940-1023, USA
*
Correspondence should be addressed to: L. Sampson, Centro Interdisciplinario de Ciencias Marinas, AV IPN s/n, Apartado Postal 592, La Paz, BCS, MexicoCP 23000 email: [email protected]

Abstract

This study confirms the diet and determines the trophic position of the bentfin devil ray (Mobula thurstoni) and spinetail devil ray (Mobula japanica) in the south-west Gulf of California. There has been an active fishery in the area for these filter-feeding elasmobranchs, which are highly susceptible to exploitation due to low fecundity and long lifespan. However, information on their basic biology is scarce. δ13C and δ15N values of devil rays and zooplankton (sorted according to trophic level: herbivores, carnivores and omnivores) were determined over a period of 11 months, to allow for isotopic temporal variations in isotopic signals at the base of the food web. On the basis of fractionation factors we determined that bentfin and spinetail devil rays fed mainly on Nyctiphanes simplex, the most abundant euphausiid in neritic waters of the Gulf of California. The trophic positions obtained for the devil rays correspond to second level consumers.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Altabet, M.A., Pilskaln, C., Thunnel, R., Pride, C., Sigman, D., Chavez, F. and Francois, R. (1999) The nitrogen isotope biogeochemistry of sinking particles from the margin of the Eastern North Pacific. Deep-Sea Research I 46, 655679.Google Scholar
Brinton, E. and Townsend, A.W. (1980) Euphausiids in the Gulf of California—the 1957 cruises. California Cooperative Oceanic Fisheries Investigative Report 21, 211236.Google Scholar
Burton, R.K. and Koch, P.L. (1999) Isotopic tracking of foraging and long-distance migration in northeastern Pacific pinnipeds. Oecologia 119, 578585.Google Scholar
Carmichael, R.H., Rutecki, D., Annett, B., Gaines, E. and Valiela, I. (2004) Position of horseshoe crabs in estuarine food webs: N and C stable isotopic study of foraging ranges and diet composition. Journal of Experimental Marine Biology and Ecology 299, 231253.Google Scholar
Chipps, S.R. and Garvey, J.E. (2007) Assessment of food habits and feeding patterns. In Brown, M.L. and Guy, C.S. (eds) Analysis and interpretation of freshwater fisheries data. Maryland: American Fisheries Society, pp. 473514.Google Scholar
De Silva-Dávila, R. and Palomares-García, R. (2002) Distributional patterns of the euphausiid community in Bahía de La Paz, B.C.S., México. In Hendricks, M.E. (ed.) Contributions to the study of East Pacific crustaceans. Mexico: UNAM Instituto de Ciencias del Mar y Limnologia, pp. 109125.Google Scholar
Estrada, J.A., Rice, A.N., Lutcavage, M.E. and Skomal, G.B. (2003) Predicting trophic position in sharks of the north-west Atlantic Ocean using stable isotope analysis. Journal of the Marine Biological Association of the United Kingdom 83, 13471350.CrossRefGoogle Scholar
France, R.L. (1995) Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Marine Ecology Progress Series 124, 307312.Google Scholar
Frazer, T.K. (1996) Stable isotope composition (δ13C and δ15N) of larval krill, Euphausia superba, and two of its potential food sources in winter. Journal of Plankton Research 18, 14131426.Google Scholar
Fry, B. (2006) Stable isotope ecology. 1st edition. New York: Springer.Google Scholar
Gendron, D. (1992) Population structure of daytime surface swarms of Nyctiphanes simplex (Crustacea: Euphausiacea) in the Gulf of California, Mexico. Marine Ecology Progress Series 87, 16.Google Scholar
Gómez-Gutiérrez, J., Tremblay, N., Martínez-Gómez, S., Robinson, C.J., Del Ángel-Rodríguez, J., Rodríguez-Jaramillo, C. and Zavala-Hernández, C. (2009) Biology of the subtropical sac-spawning euphausiid Nyctiphanes simplex in the northwestern seas of Mexico: vertical and horizontal distribution patterns and seasonal variability of brood size. Deep-Sea Research II doi: 10.1016/j.dsr2.2009.10.010Google Scholar
Hansson, S., Hobbie, J.E., Elmgren, R., Larsson, U., Fry, B. and Johansson, S. (1997) The stable nitrogen isotope ratio as a marker of food-web interactions and fish migration. Ecology 78, 22492257.Google Scholar
Harvey, C.J., Hanson, P.C., Essington, T.E., Brown, P.B. and Kitchell, J.F. (2002) Using bioenergetic models to predict stable isotope ratios in fishes. Canadian Journal of Fisheries and Aquatic Science 59, 115124.Google Scholar
Hobson, K.A. (1999) Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120, 314326.CrossRefGoogle Scholar
Homma, K., Maruyama, T., Itoh, T., Ishihara, H. and Uchida, S. (1999) Biology of the manta ray, Manta birostris Walbaum, in the Indo-Pacific. In Séret, B. and Sire, J.-Y. (eds) Proceedings of the 5th Indo-Pacific Fish Conference, Nouméa, 1997. Nouméa: Société Française d'Icthyiologie, pp. 209216.Google Scholar
Kaehler, S. and Pakhomov, E.A. (2001) Effects of storage and preservation on the δ13C and δ15N signatures of selected marine organisms. Marine Ecology Progress Series 219, 299304.Google Scholar
Kibirige, I., Perissinotto, R. and Nozais, C. (2002) Alternative food sources of zooplankton in a temporarily-open estuary: evidence from δ13C and δ15N. Journal of Plankton Research 24, 10891095.Google Scholar
Kleppel, G.S. (1993) On the diets of calanoid copepods. Marine Ecology Progress Series 99, 183195.Google Scholar
Lavín, M.F. and Marinone, S.G. (2003) An overview of the physical oceanography of the Gulf of California. In Velasco-Fuentes, U., Sheinbaum, J. and Ochoa de la Torre, J.L. (eds) Nonlinear processes in geophysical fluid dynamics. Holland: O. Kluwer Academic, pp. 173204.Google Scholar
Leggett, M.F., Servos, M.R., Hesslein, R., Johannsson, O., Millard, E.S. and Dixon, D.G. (1999) Biogeochemical influences on the carbon isotope signatures of Lake Ontario biota. Canadian Journal of Fisheries and Aquatic Science 56, 22112218.Google Scholar
MacNeil, M.A., Skomal, G.B. and Fisk, A.T. (2005) Stable isotopes from multiple tissues reveal diet switching in sharks. Marine Ecology Progress Series 302, 199206.Google Scholar
McCutchan, J.H. Jr., Lewis, W.M. Jr., Kendall, C. and McGrath, C.C. (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen and sulfur. Oikos 102, 378390.Google Scholar
McEachran, J.D. and Notarbartolo-di-Sciara, G. (1995) Peces batoideos. In Fischer, W., Krupp, F., Schneider, W., Sommer, C., Carpenter, K.E. and Niem, V.H. (eds) Guia FAO para la identificación de especies para los fines de la pesca, Pacífico Centro-Oriental. Rome: FAO, pp. 745768.Google Scholar
Michener, R.H. and Schell, D.M. (1994) Stable isotope ratios as tracers in marine aquatic food webs. In Lajtha, K. and Michener, R. (eds) Stable isotopes in ecology and environmental science. Oxford: Blackwell Scientific Publications, pp. 138157.Google Scholar
Minagawa, M. and Wada, E. (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between 15N and animal age. Geochimica et Cosmochimica Acta 48, 11351140.Google Scholar
NOM-029-PESC (2004) Norma Oficial Mexicana de pesca responsable de tiburones y rayas. Especificaciones para su aprovechamiento. Available from http://www.imacmexico.org/ev_en.php?ID=23796_201&ID2=DO_TOPIC (accessed 10 May 2008).Google Scholar
Nortarbartolo-di-Sciara, G. (1988) Natural history of the rays of the genus Mobula in the Gulf of California. Fishery Bulletin 86, 4566.Google Scholar
O'Reilly, C.M., Hecky, R.E., Cohen, A.S. and Plisnier, P.-D. (2002) Interpreting stable isotopes in food webs: recognizing the role of time averaging at different trophic levels. Limnology and Oceanography 47, 306309.CrossRefGoogle Scholar
Palomares, R., Suárez-Morales, R. and Hernández-Trujillo, S. (1998) Catálogo de los Copépodos (Crustacea) Pelágicos del Pacífico Mexicano. 1st edition. La Paz: Centro Interdisciplinario de Ciencias Marinas y El Colegio de La Frontera Sur.Google Scholar
Perry, R.I., Thompson, P.A., Mackas, D.L., Harrison, P.J. and Yelland, D.R. (1999) Stable carbon isotopes as pelagic food web tracers in adjacent shelf and slope regions off British Columbia. Canadian Journal of Fisheries and Aquatic Science 56, 24772485.Google Scholar
Pinnegar, J.K. and Polunin, N.V.C. (2000) Contributions of stable-isotope data to elucidating food webs of Mediterranean rocky littoral fishes. Oecologia 122, 399409.Google Scholar
Post, D.M. (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703718.Google Scholar
Rau, G.H., Mearns, A.J., Young, D.R., Olson, R.J., Schafer, H.A. and Kaplan, I.R. (1983) Animal 13C/12C correlates with trophic level in pelagic food webs. Ecology 64, 13141318.Google Scholar
Ritz, D.A., Hosie, G.W. and Kirkwood, R.J. (1990) Diet of Nyctiphanes australis Sars (Crustacea: Euphausiacea). Australian Journal of Marine and Freshwater Resources 41, 365374.Google Scholar
Sánchez-Ortíz, C. and Gómez-Gutiérrez, J. (1992) Distribución y abundancia de los estadíos planctónicos de la jaiba Callinectes bellicosus (Decapoda: Portunidae) en el complejo lagunar de Bahía Magdalena, B. C. S., México. Revista de Investigación Científica de la Universidad Autónoma de Baja California Sur 3, 4760.Google Scholar
Schmidt, K., Atkinson, A., Stübing, D., McClelland, J.W., Montoya, J.P. and Voss, M. (2003) Trophic relationships among Southern Ocean copepods and krill: some uses and limitations of a stable isotope approach. Limnology and Oceanography 48, 277289.Google Scholar
Sherwood, G.D. and Rose, G.A. (2005) Stable isotope analysis of some representative fish and invertebrates of the Newfoundland and Labrador continental shelf food web. Estuarine, Coastal and Shelf Science 63, 537549.CrossRefGoogle Scholar
Simenstad, C.A. and Wissmar, R.C. (1985) δ13C evidence of the origins and fates of organic carbon in estuarine and nearshore foodwebs. Marine Ecology Progress Series 22, 141152.Google Scholar
Sims, D.W. and Merrett, D.A. (1997) Determination of zooplankton characteristics in the presence of surface feeding basking sharks Cetorhinus maximus. Marine Ecology Progress Series 158, 297302.Google Scholar
Sims, D.W., Southall, E.J., Tarling, G.A. and Metcalfe, J.D. (2005) Habitat-specific normal and reverse diel vertical migration in the plankton-feeding basking shark. Journal of Animal Ecology 74, 755761.Google Scholar
Stevens, J.D., Bonfil, R., Dulvy, N.K. and Walker, P.A. (2000) The effects of fishing on sharks, rays, and chimaeras (chondrichthyans), and the implications for marine ecosystems. ICES Journal of Marine Science 57, 476494.Google Scholar
Suh, H. (1989) Morphology of the gastric mill of Nyctiphanes australis (Euphausiacea, Crustacea). Bulletin of the Korean Fisheries Society 22, 214218.Google Scholar
Suh, H.L., Toda, T. and Terazaki, M. (1991) Diet of calyptopes of the euphausiid Euphausia pacifica in the Yellow Sea. Marine Biology 111, 4548.Google Scholar
Sweeting, C.J., Jennings, S. and Polunin, N.V.C. (2005) Variance in isotopic signatures as a descriptor of tissue turnover and degree of omnivory. Functional Ecology 19, 777784.Google Scholar
Vander Zanden, M.J. and Rasmussen, J.B. (2001) Variation in δ15N and δ13C trophic fractionation: Implications for aquatic food web studies. Limnology and Oceanography 46, 20612066.Google Scholar
Vizzini, S. and Mazzola, A. (2002) Stable carbon and nitrogen ratios in the sand smelt from a Mediterranean coastal area: feeding habits and effect of season and size. Journal of Fish Biology 60, 14981510.Google Scholar
White, W.T., Giles, J., Dharmadi, and Potter, I.C. (2006) Data on the bycatch fishery and reproductive biology of mobulid rays (Myliobatiformes) in Indonesia. Fisheries Research 82, 6573.Google Scholar
Zhang, G.-T., Li, C.-L., Sun, S., Zhang, H.-Y., Sun, J. and Ning, X.-R. (2006) Feeding habits of Calanus sinicus (Crustacea: Copepoda) during spring and autumn in the Bohai Sea studied with the herbivore index. Scientia Marina 70, 381388.Google Scholar