Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T12:21:19.998Z Has data issue: false hasContentIssue false

Copepod community structure related to environmental factors from a summer cruise in the Gulf of Gabès (Tunisia, eastern Mediterranean Sea)

Published online by Cambridge University Press:  09 July 2009

Zaher Drira
Affiliation:
Université de Sfax, Faculté des Sciences de Sfax, Département des Sciences de la Vie. Unité de Recherche UR/05ES05 Biodiversité et Ecosystème Aquatiques, Route Soukra Km 3.5–BP 1171–CP 3000 Sfax, Tunisie
Malika Belhassen
Affiliation:
Institut National des Sciences et Technologie de la Mer, 2025 Salammbô Tunis, Tunisie
Habib Ayadi
Affiliation:
Université de Sfax, Faculté des Sciences de Sfax, Département des Sciences de la Vie. Unité de Recherche UR/05ES05 Biodiversité et Ecosystème Aquatiques, Route Soukra Km 3.5–BP 1171–CP 3000 Sfax, Tunisie
Asma Hamza
Affiliation:
Institut National des Sciences et Technologie de la Mer, Centre de Sfax–BP 1035–CP 3018 Sfax, Tunisie
Rafik Zarrad
Affiliation:
Institut National des Sciences et Technologie de la Mer, 2025 Salammbô Tunis, Tunisie
Abderrahmen Bouaïn
Affiliation:
Université de Sfax, Faculté des Sciences de Sfax, Département des Sciences de la Vie. Unité de Recherche UR/05ES05 Biodiversité et Ecosystème Aquatiques, Route Soukra Km 3.5–BP 1171–CP 3000 Sfax, Tunisie
Lotfi Aleya*
Affiliation:
Université de Franche-Comté, Laboratoire de Chrono-Environnement, UMR CNRS 6249 1, Place Leclerc, 25030 Besançon cedex, France
*
Correspondence should be addressed to: L. Aleya, Université de Franche-Comté, Laboratoire de Chrono-Environnement, UMR CNRS 6249 1, Place Leclerc, 25030 Besançon cedex, France email: [email protected]

Abstract

We studied the summer spatial distribution of the copepod community in both the neritic and oceanic areas of the Gulf of Gabès (Tunisia, eastern Mediterranean Sea) coupled with environmental factors. Copepods were the most abundant zooplankton throughout the sampling period, contributing 78% of the total zooplankton. A total of 14 copepod families were identified in all stations, with an overwhelming abundance of Acartiidae and Oithonidae (39.05 and 39.09% of total abundance, respectively). Abundance of Acartia clausi and chlorophyll-a concentrations were negatively correlated with salinity, suggesting that this species probably escaped the high coastal salinity (38 psu). Significant correlation determined between A. clausi and tintinnids at 50 m isobaths indicates that these planktonic ciliates probably served as a substantial food link towards higher trophic levels of this area. Conversely, Oithona nana which was well adapted to high chlorophyll-a concentrations and high salinity along the coast, showed significant correlations with Dictyochophyceae, Dinophyceae, Bacillariophyceae and Euglenophyceae, suggesting that this small copepod was capable of feeding on a wide selection of phytoplankton preys.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aleya, L., Michard, M., Khattabi, H. and Devaux, J. (2006) Coupling of the biochemical composition and caloric content of zooplankters with the Microcystis aeruginosa proliferation in a highly eutrophic reservoir. Enviromental Technology 27, 11811190.Google Scholar
Annabi-Trabelsi, N., Daly-Yahia, M.N., Romdhane, M.S. and Ben Maïz, N. (2005) Seasonal variability of planktonic copepods in Tunis North lagoon (Tunisia, North Africa). Cahier de Biologie Marine 46, 325333.Google Scholar
Atkinson, A. (1996) Subantarctic copepods in an oceanic, low chlorophyll environment: ciliate predation, food selectivity and impact on prey population. Marine Ecology Progress Series 130, 8596.CrossRefGoogle Scholar
Balech, E. (1988) Los dinoflagelados del Atlantico sudoccidental. Madrid: Instituto Español de Oceanografia, Publicaciones Especiales, 309 pp.Google Scholar
Benon, P., Blanc, F., Bourgade, B., Charpy, L., Kantin, R., Kerambrun, P., Leveau, M., Romano, J.C. and Sautriot, D. (1976) Golfe de Fos: impact de la pollution. Bulletin de l'Observatoire de la Mer 3, 113.Google Scholar
Béranger, K., Mortier, L., Gasparini, G.P., Gervasio, L., Astraldi, M. and Crepon, M. (2004) The dynamics of the Sicily Strait: a comprehensive study from observations and models. Deep-Sea Research 51, 411440.Google Scholar
Blanc, F., Leveau, M. and Kerambrun, P. (1975) Eutrophie et pollution: structure et fonctionnement du sous-écosystème planctonique. In Proceedings of the 10th European Symposium on Marine Biology, Ostende 2, pp. 6183.Google Scholar
Bonnet, D., Richardson, A., Harris, R., Hirst, A., Beaugrand, G., Edwards, M., Ceballos, S., Diekman, R., Lopez-Urrutia, A., Valdes, L., Carlotti, F., Molinero, J.C., Weikert, H., Greve, W., Lucic, D., Albaina, A., Yahia, N.D., Umani, S.F., Miranda, A., Dos Santos, A., Cook, K., Robinson, S. and Fernandez de Puelles, M.L. (2005) An overview of Calanus helgolandicus ecology in European waters. Progress in Oceanography 65, 153.CrossRefGoogle Scholar
Bourrelly, P. (1985) Les Algues d'Eau Douce. Initiation à la Systèmatique. Tome II. Les Algues bleues et rouges. Les Euglénins, Peridiniens et Cryptomonadines. Paris: Société Nouvelle des Editions Boubée.Google Scholar
Bradford-Grieve, J.M., Markhaseva, E.L., Rocha, C.E.F. and Abiahy, B. (1999) South Atlantic zooplankton. Leiden, The Netherlands: Backhuys Publishers, pp. 8691098.Google Scholar
CGP (1996) Annuaire des statistiques des pêches en Tunisie. Ministère de l'Agriculture, Tunisie.Google Scholar
Calbet, A., Garrido, S., Saiz, S., Alcarz, M. and Durate, C.M. (2001) Annual zooplankton succession in coastal NW Mediterranean waters: the importance of smaller size fractions. Journal of Plankton Research 23, 319331.CrossRefGoogle Scholar
Cervetto, G., Gaudy, R. and Pagano, M. (1999) Influence of salinity on distribution of Acartia tonsa (Copepoda Calanoida). Journal of Experimental Marine Biology and Ecology 235, 3345.CrossRefGoogle Scholar
Clarke, K.R. and Gorley, R.N. (2001) PRIMER v5: user manual/tutorial. Plymouth: PRIMER-E.Google Scholar
Cotonnec, G., Brunet, C., Sautour, B. and Thoumelin, G. (2001) Nutritive value and selection of food particles by copepods during a spring bloom of Phaeocystis sp. in the English Channel, as determined by pigment and fatty acid analysis. Journal of Plankton Research 23, 693703.CrossRefGoogle Scholar
Daan, R. (1989) Factors controlling the summer development of copepod populations in the southern Bight of the North Sea. Netherlands Journal of Sea Research 23, 305322.CrossRefGoogle Scholar
Dagg, M.J. (1993) Sinking particles as a possible source of nutrition for the large calanoid copepod Neocalanus cristatus in the Subarctic Pacific Ocean. Deep-Sea Research 40, 14311445.CrossRefGoogle Scholar
Daly Yahia, M.N., Souissi, O.S. and Daly Yahia-Kéfi, O. (2004) Spatial and temporal structure of planktonic copepods in the Bay of Tunis (southwestern Mediterranean Sea). Zoological Studies 43, 366375.Google Scholar
Drira, Z., Hamza, A., Bel Hassen, M., Ayadi, H., Bouaïn, A. and Aleya, L. (2008) Dynamics of dinoflagellates and environmental factors during the summer in the Gulf of Gabès (Tunisia, Eastern Mediterranean Sea). Scientia Marina 72, 5971.Google Scholar
Drira, Z., Bel Hassen, M., Hamza, A., Rebai, A., Bouaïn, A., Ayadi, H. and Aleya, L. (2009) Spatial and temporal variations of microphytoplankton composition related to hydrographic conditions in the Gulf of Gabès. Journal of the Marine Biological Association of the United Kingdom 111. doi: 10.1017/S002531540900023.Google Scholar
Dodge, J.D. (1985) Atlas of dinoflagellates. A scanning electron microscope survey. London: Ferrand Press.Google Scholar
Duineveld, G.C.A., Lavaleye, M.S.S. and Berghuis, E.M. (2004) Particle flux and food supply to a seamount cold-water coral community (Galicia Bank, NW Spain). Marine Ecology Progress Series 277, 1323.CrossRefGoogle Scholar
Emery, A.R. (1968) Preliminary observations on coral reef plankton. Limnology and Oceanography 13, 293304.CrossRefGoogle Scholar
Fernandez de Puelles, M.L., Gras, D. and Hernandez-Leon, S. (2003) Annual cycle of zooplankton biomass, abundance and species composition in the neritic area of the Balearic Sea, Western Mediterranean. Marine Biology 24, 123139.Google Scholar
Fernandez de Puelles, M.L., Valencia, J. and Vicente, L. (2004) Zooplankton variability and climatic anomalies from 1994 to 2001 in the Balearic Sea (Western Mediterranean). Journal of Marine Science 61, 492500.Google Scholar
Fessenden, T. and Cowles, T.J. (1994) Copepod predation on phagotrophic ciliates in Oregon coastal waters. Marine Ecology Progress Series 107, 103111.CrossRefGoogle Scholar
Gaudy, R. and Youssara, F. (2003) Variations of zooplankton metabolism and feeding in the frontal area of the Alboran Sea (western Mediterranean) in winter. Oceanologica Acta 26, 179189.CrossRefGoogle Scholar
Gaudy, R., Cervetto, G. and Pagano, M. (1998) Comparison of the metabolism of Acartia clausi and A. tonsa: influence of temperature and salinity. Journal of Experimental Marine Biology and Ecology 247, 5165.CrossRefGoogle Scholar
Gifford, D.J. (1993) Protozoa in the diets of Neocalanus spp. in the oceanic Subarctic Pacific Ocean. Progress in Oceanography 32, 223237.CrossRefGoogle Scholar
Giron, F. (1963) Copépodes de la mer d'Alboran (Campagne du président « Théodore-Tissier » Juin). Revue des Travaux de l'Institut des Pêches Maritimes 27, 355402.Google Scholar
Grasshof, K.M. (1983) Determination of nitrate, in methods of seawater analyses. In Grasshoff, K.M., Ehradt, K. and Kremling, K. (eds) Verlag Chemie. Weinheim, Germany: Verlag Chemie, pp. 143150.Google Scholar
Gucu, A.C. (1987) Zooplankton dynamics in the Northern Cilician Basin, composition and time series. PhD thesis. Institute of Marine Sciences, Turkey: METU Erdemli.Google Scholar
Hamza-Chaffai, A., Amiard, J.C., Pellerin, J., Joux, L. and Berthet, B. (2000) The potential use of metallothionein in the clam Ruditapes decussatus as a biomarker of in situ metal exposure. Comparative Biochemistry and Physiology 127, 185197.Google ScholarPubMed
Hamza-Chaffai, A., Pellerin, J. and Amiard, J.C. (2003) Health assessment of a marine bivalve Ruditapes decussatus from the Gulf of Gabès (Tunisia). Environment International 28, 609617.CrossRefGoogle ScholarPubMed
Hartmann, H.J., Taleb, H., Aleya, L. and Lair, N. (1993) Predation on ciliates by the suspension-feeding calanoid copepod Acanthodidptomus denticornis. Canadian Journal of Fisheries and Aquatic Sciences 50, 13821393.CrossRefGoogle Scholar
Heinle, D.R. (1966) Production of a calanoıd copepod Acartia tonsa in the Patuxent river estuary. Chesapeake Science 7, 5974.CrossRefGoogle Scholar
Hop, H., Tonn, W.M. and Welch, H.E. (1997) Bioenergetics on arctic cod Booreogodus saida at low temperatures. Canadian Journal of Aquatic Sciences 54, 17721784.CrossRefGoogle Scholar
Huber-Pestalozzi, G. (1968) Das phytoplankton des Susswassars, 1. Halfte, Cryptophyceae, Chloromonadophyceae, Dinophyceae. Stuttgart: E. Schweizerbart Verlag.Google Scholar
Jeffries, H.P. (1967) Saturation of estuarine zooplankton by cogeneric associates. In Lauff, G.M. (ed.) Estuaries. Publication of the American Association for the Advancement Science 83, pp. 500508.Google Scholar
Kleppel, G.S., Holliday, D.V. and Pieper, R.E. (1991) Trophic interactions between copepods and microplankton: a question about the role of diatoms. Limnology and Oceanography 36, 172178.CrossRefGoogle Scholar
Kobari, T., Shinada, A. and Tsuda, A. (2003) Functional roles of interzonal migrating mesozooplankton in the western Subarctic Pacific. Progress in Oceanography 57, 279298.CrossRefGoogle Scholar
Lakkis, S. (1976) Sur la présence des eaux libanaises quelques copépodes d'origine indo-pacifique. Rapport de la Commission Internationale pour l'Exploration Scientifique de la Mer Méditerranée 23, 8385.Google Scholar
Lampert, W., Fleckner, W., Rai, H. and Taylor, B. (1986) Phytoplankton control by grazing zooplankton: a study on the spring clear-water phase. Limnology and Oceanography 31, 478490.CrossRefGoogle Scholar
Lecombe, H. and Tchernia, P. (1972) Caractères hydrologiques et circulation des eaux en Méditerranée. In Stanley, D. (ed.) Mediterranean Sea: a natural sedimentation laboratory. Stroudsburg, PA: Dowden, Hutchinson and Ross, pp. 2536.Google Scholar
Lee, W.Y. and McAlice, B.J. (1979) Seasonal succession and breeding cycles of three species of Acartia (Copepoda: Calanoida) in a Marine estuary. Estuaries 2, 228235.CrossRefGoogle Scholar
Leising, A.W., Pierson, J.J., Halsband-Lenk, C., Horner, R. and Postel, J. (2005) Copepod grazing during spring blooms: can Pseudocalanus newmani induce trophic cascades? Progress in Oceanography 67, 406421.CrossRefGoogle Scholar
Mauchline, J. (1998) The biology of calanoid copepods. In Blaxter, J.H.S. (ed.) Advances in marine biology. San Diego, CA: Academic Press, 707 pp.Google Scholar
Mazzocchi, M.G. and Ribera d'Alcala, M. (1995) Recurrent patterns in zooplankton structure and succession in a variable coastal environment. ICES Journal of Marine Science 52, 679691.CrossRefGoogle Scholar
Miller, D.D. and Marcus, N.H. (1994) The effect of salinity and temperature on the density and sinking velocity of eggs of the calanoid copepod Acartia tonsa Dana. Journal of Experimental Marine Biology and Ecology 179, 235252.CrossRefGoogle Scholar
Paffenhöfer, G.A. (1993) On the ecology of marine cyclopoid (Crustacea Copepoda). Journal of Plankton Research 4, 8591.Google Scholar
Pérez, M.T., Dolan, J.R. and Fukai, E. (1997) Planktonic oligotrich ciliates in the NW Mediterranean: growth rates and consumption by copepods. Marine Ecology Progress Series 155, 89101.CrossRefGoogle Scholar
Pinckney, J.L., Richardson, T.L., Millie, D.F. and Paerl, H.W. (2001) Application of photopigment biomarkers for quantifying microalgal community composition and in situ growth rates. Organic Geochemistry 32, 585595.CrossRefGoogle Scholar
Riandey, V., Champalbert, G., Carlotti, F., Taupier-Letage, I. and Thibault-Botha, D. (2005) Zooplankton distribution related to the hydrodynamic features in the Algerian Basin (Western Mediterranean Sea) in summer 1997. Deep-Sea Research I 52, 20292048.CrossRefGoogle Scholar
Riccardi, N. and Mariotto, L. (2000) Seasonal variations in copepod body length: a comparison between different species in the lagoon of Venice. Aquatic Ecology 34, 243252.CrossRefGoogle Scholar
Richardson, J.A., John, H.E., Irigoien, X., Harris, P.R. and Hays, C.G. (2004) How well does the Continuous Plankton Recorder (CPR) sample zooplankton? A comparison with the Longhurst Hardy Plankton Recorder (LHPR) in the northeast Atlantic. Deep-Sea Research I 51, 12831294.CrossRefGoogle Scholar
Rose, M. (1933) Copépodes pélagiques. Faune de la France, 26. Paris: Lechevalier, 368 pp.Google Scholar
Shannon, C.E. and Weaner, G. (1949) The mathematical theory of communication. Urbana, Chicago, IL: University of Illinois Press.Google Scholar
Shih, C.T. and Chiu, T.S. (1998) Copepod diversity in the water masses of the southern East China Sea north of Taiwan. Journal of Marine Systems 15, 533542.CrossRefGoogle Scholar
Šimek, K., Bobkova, J., Macek, M., Nemoda, J. and Psenner, R. (1995) Ciliates grazing on picoplankton in a eutrophic reservoir during summer phytoplankton maximum: a study at the species and community level. Limnology and Oceanography 40, 10771090.CrossRefGoogle Scholar
Siokou-Frangou, I. (1996) Zooplankton annual cycle in a Mediterranean coastal area. Journal of Plankton Research 18, 203223.CrossRefGoogle Scholar
Souissi, S., Daly-Yahia Kefi, O. and Daly-Yahia, M.N. (2000) Spatial characterization of nutrient dynamics in the Bay of Tunis (south-western Mediterranean) using multivariate analyses: consequences for phyto- and zooplankton distribution. Journal of Plankton Research 22, 20392059.CrossRefGoogle Scholar
Souissi, S., Daly Yahia, M.N. and Daly Yahia-Kéfi, O. (2001) Predominance of the copepod Centropages kroyeri (Giesbrecht, 1892) in the Bay of Tunis during the spawning period of the anchovy Engraulis ancrasicolis. Rapport de la Commission Internationale de la Mer Méditerranée 36, 419.Google Scholar
Stoecker, D.K. and Capuzzo, J.M. (1990) Predation on protozoa: its importance to zooplankton. Journal of Plankton Research 12, 891908.CrossRefGoogle Scholar
Ter-Braak, C.J.F. (1986). Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 11671179.CrossRefGoogle Scholar
Thor, P. (2000) Specific dynamic action in calanoid copepods. PhD thesis. Denmark: University of Roskilde.Google Scholar
Tiselius, P. (1989) Contribution of aloricate ciliates to the diet of Acartia clausi and Centropages hamatus in coastal waters. Marine Ecology Progress Series 56, 4956.CrossRefGoogle Scholar
Tomas, C.R., Hasle, G.R., Steidinger, A.K., Syvertsen, E.E. and Tangen, C. (1996) Identifying marine diatoms and dinoflagellates. London: Academic Press.Google Scholar
Tregouboff, G. and Rose, M. (1957) Manuel de planctonologie méditerranéenne. Volume II. Paris: CNRS.Google Scholar
Tregouboff, G. and Rose, M. (1978a) Manuel de Planctologie Méditerranéenne. Tome I. Paris: CNRS.Google Scholar
Tregouboff, G. and Rose, M. (1978b) Manuel de Planctologie Méditerranéenne. Tome II. Paris: CNRS.Google Scholar
Tudela, S. and Palomera, I. (1997) Trophic ecology of the European anchovy Engraulis encrasicolus in the Catalan Sea (northwest Mediterranean). Marine Ecology Progress Series 160, 121134.CrossRefGoogle Scholar
Utermöhl, H. (1958) Zur Vervollkommung der quantitativen Phytoplankton Methodik. Mitteilungen Internationale Vereinigung für Theoretische und Angewandte. Limnologie 9, 138.Google Scholar
Vidjak, O., Bojanic, N., Kuspilic, G., Marasovic, I., Gladan, Z.N. and Brautovic, I. (2006) Annual variability and trophic relations of the mesozooplankton community in the eutrophicated coastal area (Vranjic Basin, eastern Adriatic Sea). Journal of the Marine Biological Association of the United Kingdom 86, 1926.CrossRefGoogle Scholar
Vieira, L., Azeiteiro, U., , P., Pastorinho, R., Marques, J.C. and Morgado, F. (2003) Zooplankton distribution in a temperate estuary (Mondego estuary southern arm: Western Portugal). Acta Oecologica 24, 163173.CrossRefGoogle Scholar
Vives, F. (1978) Distribucion de la poblacion de copepodos en el Mediterraneo Occidental. Resultados de Exp. Cientificas B/O Cornide Saavedra 7, 263302.Google Scholar