Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-09T07:10:22.108Z Has data issue: false hasContentIssue false

Cadmium in the gastropod Littorina littorea

Published online by Cambridge University Press:  11 May 2009

J. A. Nott
Affiliation:
Plymouth Marine Laboratory, Citadel Hill, Plymouth, PL1 2PB
M. J. Bebianno
Affiliation:
Universidade do Algarve, Campus de Gambelas, 8000 Faro, Portugal
W. J. Langston
Affiliation:
Plymouth Marine Laboratory, Citadel Hill, Plymouth, PL1 2PB
K. P. Ryan
Affiliation:
Plymouth Marine Laboratory, Citadel Hill, Plymouth, PL1 2PB

Extract

Tissues of Littorina littorea (Mollusca: Gastropoda) were processed for electron microscopy with an aqueous fixative which included hydrogen sulphide to precipitate intracellular cadmium. The procedure retained cadmium in the cytosol, where it was below the detection limit for x-ray microanalysis, but it did not increase the retention of the metal within lysosomes and other sites of accumulation where it was detectable. Aqueous fixation caused extraction of labile elements, particularly magnesium and potassium, and this effect was increased by the use of hydrogen sulphide. Cadmium and hydrogen sulphide had disruptive effects on the fine structure of cells. It is concluded that cytological fixatives should not include hydrogen sulphide, and that cryo-fixation is required for x-ray microanalysis of intracellular elements.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bebianno, M. J., Langston, W. J. & Simkiss, K., 1992. Metallothionein induction in Littorina littorea (Mollusca: Prosobranchia) on exposure to cadmium. Journal of the Marine Biological Association of the United Kingdom, 72, 329342.CrossRefGoogle Scholar
Bouquegneau, J. M., Canon, C., Frankignoulle, M. & Martoja, M., 1988 b. Cycle naturel du cadmium et effets de l'intoxication experimentale chez Murex trunculus L.(Prosobranche, Néogastéropode). Bulletin de la Société Royale des Sciences de Liège, 45, 275286.Google Scholar
Bouquegneau, J. M., Canon, C. & Martoja, M., 1988 a. Nouvelles données sur la teneur en cadmium de Murex trunculus (Gasteropode Prosobranche) en milieu naturel non pollué. Océanis, 14, 447451.Google Scholar
Bouquegneau, J. M. & Martoja, M., 1982. La teneur en cuivre et son degré de complexation chez quatre gastéropodes marins. Données sur le cadmium et le zinc. Oceanologica Acta, 5, 219228.Google Scholar
Bouquegneau, J. M. & Martoja, M., 1987. Seasonal variation of the cadmium content of Murex trunculus in a non-cadmium polluted environment. Bulletin of Environmental Contamination and Toxicology, 39, 6973.CrossRefGoogle Scholar
Bouquegneau, J. M., Martoja, M. & Truchet, M., 1983. Localisation biochimique du cadmium chez Murex trunculus L. (Prosobranche Néogastéropode) en milieu naturel non pollué et après intoxication expérimentale. Comptes Rendu Hebdomadaire des Séances de l'Académie des Sciences, Paris, série III, 296, 11211124.Google Scholar
George, S. G., Nott, J. A., Pirie, B. J. S. & Mason, A. Z., 1976. A comparative quantitative study of cadmium retention in tissues of a marine bivalve during different fixation and embedding procedures. Proceedings of the Royal Microscopical Society. London. Micro 76 Supplement, 11, 42.Google Scholar
Gully, J. R. & Mason, A. Z., 1993. Cytosolic redistribution and enhanced accumulation of Cu in gill tissue of Littorina littorea as a result of Cd exposure. Marine Environmental Research, 35, 5357.CrossRefGoogle Scholar
Langston, W. J. & Zhou, M., 1986. Evaluation of the significance of metal-binding proteins in the gastropod Littorina littorea. Marine Biology, 92, 505515.CrossRefGoogle Scholar
Langston, W. J. & Zhou, M., 1987. Cadmium accumulation, distribution and metabolism in the gastropod Littorina littorea: the role of metal-binding proteins. Journal of the Marine Biological Association of the United Kingdom, 67, 585601.CrossRefGoogle Scholar
Marigómez, J. A., Cajaraville, M. P. & Angulo, E., 1990. Cellular cadmium distribution in the common winkle, Littorina littorea (L.) determined by x-ray microprobe analysis and histochemistry. Histochemistry, 94, 191199.CrossRefGoogle ScholarPubMed
Martoja, M., Truchet, M. & Bouquegneau, J. M., 1984. Accumulation naturelle de cadmium chez Murextrunculus et Murex brandaris (Prosobranches Néogastéropodes): localisation histologique. Comptes Rendu Hebdomadaire des Séances de l'Académie des Sciences, Paris, série III, 298, 461466.Google Scholar
Martoja, M., Tue, V. T. & Elkaim, B., 1980. Bioaccumulation du cuivre chez Littorina littorea (L.) (Gastéropode Prosobranche): signification physiologique et écologique. Journal of Experimental Marine Biology and Ecology, 43, 251270.CrossRefGoogle Scholar
Mason, A. Z. & Nott, J. A., 1980. The association of the blood vessels and the excretory epithelium in the kidney of Littorina littorea (L.) (Mollusca, Gastropoda). Marine Biology Letters, 1, 355365.Google Scholar
Mason, A. Z. & Nott, J. A., 1981. The role of intracellular biomineralized granules in the regulation and detoxification of metals in gastropods, with special reference to the marine prosobranch Littorina littorea. Aquatic Toxicology, 1, 239256.CrossRefGoogle Scholar
Mason, A. Z., Simkiss, K. & Ryan, K. P., 1984. The ultrastructural localization of metals in specimens of Littoriofna littorea collected from clean and polluted sites. Journal of the Marine Biological Association the United Kingdom, 64, 699720.CrossRefGoogle Scholar
McCance, R. A. & Shipp, H. L., 1933. The magnesium and other inorganic constituents of some marine invertebrates. Journal of the Marine Biological Association of the United Kingdom, 19, 293296.CrossRefGoogle Scholar
Nott, J. A. & Langston, W. J., 1989. Cadmium and the phosphate granules in Littorina littorea. Journal of the Marine Biological Association of the United Kingdom, 69, 219227.CrossRefGoogle Scholar
Nott, J. A. & Langston, W. J., 1993. Effects of cadmium and zinc on the composition of phosphate granules in the marine snail Littorina littorea. Aquatic Toxicology, 25, 4354.CrossRefGoogle Scholar
Nott, J. A. & Nicolaidou, A., 1989. The cytology of heavy metal accumulations in the digestive glands of three marine gastropods. Proceedings of the Royal Society (B), 237, 347362.Google Scholar
Nott, J. A. & Nicolaidou, A., 1990. Transfer of metal detoxification along marine food chains. Journal of the Marine Biological Association of the United Kingdom, 70, 905912.CrossRefGoogle Scholar
Nott, J. A. & Nicolaidou, A., 1993. Bioreduction of zinc and manganese along a molluscan food chain. Comparative Biochemistry and Physiology, 104A, 235238.CrossRefGoogle Scholar
Rumsey, T. J., 1973. Some aspects of osmotic and ionic regulation in Littorina littorea (L.) (Gastropoda, Prosobranchia). Comparative Biochemistry and Physiology, 45A, 327344.CrossRefGoogle Scholar
Ryan, K. P., Bald, W. B., Neumann, K., Simonsberger, P., Purse, D. H. & Nicholson, D. N., 1990. Cooling rate and ice-crystal measurement in biological specimens plunged into liquid ethane, propane, and Freon 22. Journal of Microscopy, 158, 365378.CrossRefGoogle ScholarPubMed
Ryan, K. P. & Purse, D. H., 1984. Rapid freezing: specimen supports and cold gas layers. Journal of Microscopy, 136, RP5–RP6.CrossRefGoogle Scholar
Ryan, K. P., Purse, D. H., Robinson, S. G. & Wood, J. W., 1987. The relative efficiency of cryogens used for plunge-cooling biological specimens. Journal of Microscopy, 145, 8996.CrossRefGoogle ScholarPubMed
Simkiss, K. & Mason, A. Z., 1984. Cellular responses of molluscan tissues to environmental metals. Marine Environmental Research, 14, 103118.CrossRefGoogle Scholar
Taylor, M., Simkiss, K. & Greaves, G. N., 1986. Amorphous structure of intracellular mineral granules. Biochemical Society Transactions, 14, 549552.CrossRefGoogle ScholarPubMed
Viarengo, A. & Nott, J. A., 1993. Mechanisms of heavy metal cation homeostasis in marine invertebrates. Comparative Biochemistry and Physiology, 104C, 355372Google Scholar