Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T09:40:46.323Z Has data issue: false hasContentIssue false

The Bostrychietum community of pneumatophores in Araçá Bay: an analysis of the diversity of macrofauna

Published online by Cambridge University Press:  09 December 2015

Abel Furlan García
Affiliation:
Programa de Pós-graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-970, SP, Brazil
Marília Bueno
Affiliation:
Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-970, SP, Brazil
Fosca Pedini Pereira Leite*
Affiliation:
Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-970, SP, Brazil
*
Correspondence should be addressed to: F.P.P. Leite, Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-970, SP, Brazil email: [email protected]

Abstract

A mangrove forest can harbour several macroalgal assemblages growing on pneumatophores, roots, stems and other hard substrates. These algae belong to various genera, most typically Bostrychia, and form a community called the Bostrychietum. This study describes the fauna associated with the Bostrychietum and the effect of emersion time on the community. Seasonal samples were collected from pneumatophores on an island in Araçá Bay in 2012, in two areas, one on the border of the island and one inland. Each pneumatophore was considered a sample. The border samples, with a shorter emersion time, contained a richer algal flora associated with pneumatophores, and fauna with species of varied dietary habits. The inland samples, with a longer emersion time, contained only two algal genera and fauna species comprised mostly of omnivorous amphipods and desiccation-resistant detritivorous species. Macrofauna diversity and richness varied over time and were lower in spring. Therefore, the emersion time of the Bostrychietum and the period of the year affect the community structure, for both the macroalgae and the associated fauna.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Airoldi, L., Fabiano, M. and Cinelli, F. (1996) Sediment deposition and movement over a turf assemblage in a shallow rocky coastal area of the Ligurian Sea. Marine Ecology Progress Series 133, 241251.CrossRefGoogle Scholar
Amado-Filho, G.M., Horta, P.A., Brasileiro, P.S., Barros-Barreto, M.B. and Fujii, M.T. (2006) Subtidal benthic marine algae of the marine state park of Laje de Santos (São Paulo, Brazil). Brazilian Journal of Oceanography 54, 224234.CrossRefGoogle Scholar
Amaral, A.C.Z., Migotto, A.E., Turra, A. and Schaeffer-Novelli, Y. (2010) Araçá: biodiversidade, impactos e ameaças. Biota Neotropica 10, 219264.CrossRefGoogle Scholar
Anderson, G. (2015) Zeuxo (Parazeuxo) coralensis. World register of marine species. Available at http://marinespecies.org/aphia.php?p=taxdetails&id=247712.Google Scholar
Anderson, M.J. (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecology 26, 3246.Google Scholar
Brawley, S.H. and Adey, W.H. (1981) The effect of micrograzers on algal community structure in a coral reef microcosm. Marine Biology 61, 167177.CrossRefGoogle Scholar
Caires, T.A., Costa, I.O., Jesus, P.B., Matos, M.R.B., Pereira-Filho, G.H. and Nunes, J.M.C. (2013) Evaluation of the stocks of Hypnea musciformis (Rhodophyta: Gigartinales) on two beaches in Bahia, Brazil. Brazilian Journal of Oceanography 61, 6571.CrossRefGoogle Scholar
Chapman, M.G. and Tolhurst, T.J. (2007) Relationships between benthic macrofauna and biogeochemical properties of sediments at different spatial scales and among different habitats in mangrove forests. Journal of Experimental Marine Biology and Ecology 343, 96109.CrossRefGoogle Scholar
Chemello, R. and Milazzo, M. (2002) Effect of algal architecture on associated fauna: some evidence from phytal molluscs. Marine Biology 140, 981990.Google Scholar
Cheng, L.A.N.N.A. and Frank, J.H. (1993) Marine insects and their reproduction. Oceanography and Marine Biology: An Annual Review 31, 479506.Google Scholar
Christofoletti, R.A., Murakami, V.A., Oliveira, D.N., Barreto, R.E. and Flores, A.A.V. (2010) Foraging by the omnivorous crab Pachygrapsus transversus affects the structure of assemblages on sub-tropical rocky shores. Marine Ecology Progress Series 420, 125134.CrossRefGoogle Scholar
Clarke, K.L. and Gorley, R.N. (2006) Primer v6: user manual/tutorial. Plymouth: Primer-E.Google Scholar
Fauchald, K. and Jumars, P.A. (1979) The diet of worms: a study of polychaete feeding guilds. Oceanography and Marine Biology, an Annual Review 17, 193284.Google Scholar
Fontes, K.A.A., Pereira, S.M.B. and Zickel, C.S. (2007) Macroalgas do “Bostrychietum” aderido em pneumatóforos de duas áreas de manguezal do Estado de Pernambuco, Brasil. Iheringia 62, 3138.Google Scholar
Fujita, M.R. (1985) The role of nitrogen status in regulating transient ammonium uptake and nitrogen storage by macroalgae. Journal of Experimental Marine Biology and Ecology 92, 283301.CrossRefGoogle Scholar
Garbary, D.J., Jamieson, M.M. and Taylor, B.R. (2009) Population ecology of the marine insect Halocladius variabilis (Diptera: Chironomidae) in the rocky intertidal zone of Nova Scotia, Canada. Marine Ecology Progress Series 376, 193202.CrossRefGoogle Scholar
Gee, J.M. and Somerfield, P.J. (1997) Do mangrove diversity and leaf litter decay promote meiofaunal diversity? Journal of Experimental Marine Biology and Ecology 218, 1333.Google Scholar
Gubitoso, S., Duleba, W., Teodoro, A.C., Prada, S.M., Rocha, M.M., Lamparelli, C.C., Bevilacqua, J.E. and Moura, D.O. (2008) Estudo geoambiental da região circunjacente ao emissário submarino de esgoto do Araçá, São Sebastião (SP). Revista Brasileira de Geociências 38, 467475.CrossRefGoogle Scholar
Gwyther, J. (2000) Meiofauna in phytal-based and sedimentary habitats of a temperate mangrove ecosystem – a preliminary survey. Proceedings of the Royal Society of Victoria 112, 137151.Google Scholar
Icely, J.D. and Nott, J.A. (1985) Feeding and digestion in Corophium volutator (Crustacea: Amphipoda). Marine Biology 89, 183195.CrossRefGoogle Scholar
Jacobucci, G.B. (2005) Interações Sargassum-epífitas-anfípodes herbívoros na região de Ubatuba, litoral norte do Estado de São Paulo. Tese de Doutorado. Campinas: Universidade Estadual de Campinas.CrossRefGoogle Scholar
Leite, F.P.P., Jacobucci, G.B. and Güth, A.Z. (2011) As algas como habitat de organismos marinhos. In Amaral, A.C.Z. and Nallin, S.A.H. (eds) Biodiversidade e ecossistemas bentônicos marinhos do litoral norte do Estado de São Paulo Sudeste, Brasil. Campinas, SP: UNICAMP/IB, pp. 340353.Google Scholar
Longo, P.A.S., Fernandes, M.C., Leite, F.P.P. and Passos, F.D. (2014) Gastropoda (Mollusca) associated to Sargassum sp. beds in São Sebastião Channel – São Paulo, Brazil. Biota Neotropica 14, 110.CrossRefGoogle Scholar
Lopes, A.L. (2011) Fauna associada às macroalgas epífitas no manguezal do Rio das Garças, Guaratuba, Paraná. Tese de Doutorado. Curitiba: Universidade Federal do Paraná.Google Scholar
Lowry, J. (2015) Chelorchestia darwini (Müller, 1864). In Horton T., Lowry J. and De Broyer C. (2013 onwards) World Amphipoda Database. Accessed through World register of marine species. Available at http://www.marinespecies.org/aphia.php?p=taxdetails&id=555971.Google Scholar
Machado, G.B.O. (2013) Associação de anfípodes herbívoros com a alga parda Sargassum filipendula e suas epífitas: variação temporal e efeito da dieta sobre a aptidão. Dissertação de Mestrado. Campinas: Universidade Estadual de Campinas.Google Scholar
Mackenzie, C.L. Jr (2000) The abundances of small invertebrates in relation to sea lettuce, Ulva lactuca, mats. Bulletin of the New Jersey Academy of Science 45, 1317.Google Scholar
Melville, F. and Pulkownik, A. (2007) Zonal and seasonal variation in the distribution and abundance of mangrove macroalgae in the Clyde River, Australia. Estuarine, Coastal and Shelf Science 71, 683690.CrossRefGoogle Scholar
Odum, W.E. and Heald, E.J. (1972) Trophic analysis of an estuarine mangrove community. Bulletin of Marine Science 22, 671738.Google Scholar
Pereira, R.C., Donato, R., Teixeira, V.L. and Cavalcanti, D.N. (2000) Chemotaxis and chemical defenses in seaweed susceptibility to herbivory. Revista Brasileira de Biologia 60, 405414.CrossRefGoogle ScholarPubMed
Pires-Vanin, A.M.S. (1981) Ecological study on littoral and infralittoral isopods from Ubatuba, Brazil. Boletim do Instituto Oceanográfico 30, 2740.CrossRefGoogle Scholar
Post, E. (1936) Systematische und pflanzengeographische Notizen zur Bostrychia-Caloglossa-Assoziation. Revue Algologique 9, 184.Google Scholar
Poovachiranon, S., Boto, K. and Duke, N. (1986) Food preference studies and ingestion rate measurements of the mangrove amphipod Parhyale hawaiensis (Dana). Journal of Experimental Marine Biology and Ecology 98, 129140.CrossRefGoogle Scholar
Proches, S. and Marshall, D.J. (2002) Epiphytic algal cover and sediment deposition as determinants of arthropod distribution and abundance on mangrove pneumatophores. Journal of the Marine Biological Association of the United Kingdom 82, 937942.CrossRefGoogle Scholar
Proches, S., Marshall, D.J., Ugrasen, K. and Ramcharan, A. (2001) Mangrove pneumatophore arthropod assemblages and temporal patterns. Journal of the Marine Biological Association of the United Kingdom 81, 545552.CrossRefGoogle Scholar
Robles, C. (1982) Disturbance and predation in an assemblage of herbivorous Diptera and algae on rocky shores. Oecologia 54, 2331.CrossRefGoogle Scholar
Rützler, K. and Feller, C. (1999) Mangrove swamp communities: an approach in Belize. In Yáñez-Arancibia, A. and Lara-Domínguez, A.L. (eds) Ecosistemas de Manglar en América Tropical. Mangrove System in Tropical America. A.C. México: Instituto de Ecología; Costa Rica: IUCN/ORMA; Silver Spring, MD: NOAA/NMFS, pp. 3950.Google Scholar
Serejo, C.S. (2004) Talitridae (Amphipoda, Gammaridea) from the Brazilian coastline. Zootaxa 646, 129.CrossRefGoogle Scholar
Shoemaker, C.R. (1956) Observations on the amphipod genus Parhyale . Proceedings of the United States National Museum 106, 345358.CrossRefGoogle Scholar
Souza, L.L., Senna, A.R., Otaguiri, B.A. and Colpo, K.D. (2013) Primeiro registro de Chelorchestia darwini (Müller, 1864) (Crustacea: Amphipoda: Talitridae) associada ao “Bostrychietum”, em uma área de manguezal em Praia Grande, norte do Estado de São Paulo. Cadernos UniFOA 21, 8591.CrossRefGoogle Scholar
Taouil, A. and Yoneshigue-Valentin, Y. (2002) Alterações na composição florística das algas da Praia de Boa Viagem (Niterói, RJ). Revista Brasileira de Botânica 25, 405412.Google Scholar
Tavares, M.R., Grande, H. and Jacobucci, G.B. (2013) Habitat and food selection by herbivorous amphipods associated with macroalgal beds on the southeast coast of Brazil. Nauplius 21, 915.CrossRefGoogle Scholar
Underwood, A.J. (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge: Cambridge University Press.Google Scholar
West, J.A. (1991) New records of marine algae from Perú. Botanica Marina 34, 459464.CrossRefGoogle Scholar
Yokoya, N.S., Plastino, E.M., Braga, M.R.A., Fujii, M.T., Cordeiro-Marino, M., Eston, V.R. and Harari, J. (1999) Temporal and spatial variations in the structure of macroalgal communities associated with mangrove trees of Ilha do Cardoso, São Paulo state, Brazil. Revista Brasileira de Botânica 22, 195204.Google Scholar