Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-24T13:29:12.808Z Has data issue: false hasContentIssue false

Biochemical differences between Calanus finmarchicus and C. helgolandicus Esterases, malate and triose-phosphate dehydrogenases, aldolase, ‘peptidases’, and Other enzymes

Published online by Cambridge University Press:  11 May 2009

Clyde Manwell
Affiliation:
The Laboratory, Citadel Hill, Plymouth
C. M. Ann Baker
Affiliation:
The Laboratory, Citadel Hill, Plymouth
P. A. Ashton
Affiliation:
The Laboratory, Citadel Hill, Plymouth
E. D. S. Corner
Affiliation:
The Laboratory, Citadel Hill, Plymouth

Extract

Three species of copepods—Calanus finmarchicus (Gunnerus), C. helgolandicus (Claus) and C. hyperboreus (Krcyer)—can be easily and consistently differentiated by starch-gel electrophoresis of a number of their enzymes. The techniques used allow the study of individual variation in natural populations of small invertebrates, some of the variation being readily equated with known genetically based protein polymorphisms in man and other species. C. finmarchicus and C. helgolandicus have 15 enzyme zones in common and differ by 24-28 zones. By the rationale of molecular biology it can be suggested that these two forms differ in two-thirds of the structural genes. The results support the morpho-logical studies by Rees (1949) and Matthews (1966b) and the chromosomal studies by Harding (1963). Hence it is clear that the ‘finmarchicus-helgolandicus’ problem is solved: C. finmarchicus and C. helgolandicus are distinct species. The potentials and problems of biochemical systematics are discussed with particular reference to marine biology.

INTRODUCTION

Electrophoretic techniques have contributed to the solution of many taxonomic problems—for example, the monophyletic origin of ratite birds (Sibley, 1960), the discovery of a sibling species of sea-cucumber (Manwell & Baker, 1963 a; Manwell, 1966a), the status of species and populations of pheasants (Baker, 1965; Baker, Manwell, Labisky & Harper, 1966), the union of the orang-utan, chimpanzee, gorilla and man into one family, the Pongidae (Tashian, 1965), and the recognition of hybridization in lizards (Dessauer, Fox & Pough, 1962) and fishes (Manwell, Baker & Childers, 1963).

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1967

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, A. C, 1964. Polymorphism and natural selection in human populations. Cold Spring Harb. Symp. quant. Biol., Vol. 29, pp. 137–49.CrossRefGoogle ScholarPubMed
Arnason, A. & Pantelouris, E., 1966. Serum esterases ofApodemus sylvaticus and Mus musculus. Comp. Biochem. Physiol., Vol. 19, pp. 5361.CrossRefGoogle ScholarPubMed
Attwood, K. C.. 1965. Transcription and translation of genes. In Reproduction: Molecular, Subcellular, and Cellular, pp. 1738. Ed. M., Locke. New York Academic Press.CrossRefGoogle Scholar
Baglioni, C, 1963. The fusion of two peptide chains in hemoglobin Lepore and its interpretation as a genetic deletion. Proc. natn. Acad. Sci. U.S.A., Vol. 48, pp. 1880–7.CrossRefGoogle Scholar
Baker, C. M. A., 1964. Molecular genetics of avian proteins. III. The egg proteins of an isolated population of Jungle Fowl,Gallus gallus L. Comp. Biochem. Physiol., Vol. 12, pp. 389403.CrossRefGoogle Scholar
Baker, C. M. A., 1965. Molecular genetics of avian proteins. IV. The egg-white proteins of the Golden Pheasant,Chrysolophus pictus L., and Lady Amherst's Pheasant,C. Amherstiae Leadbeater, and their possible evolutionary significance. Comp. Biochem. Physiol., Vol. 16, pp. 93101.CrossRefGoogle Scholar
Baker, C. M. A., 1966 a. Species, tissue, and individual specificity of low ionic strength extracts of avian muscle and other organs revealed by starch-gel electrophoresis. Can. J. Biochem., Vol. 44, pp. 853–9.CrossRefGoogle ScholarPubMed
Baker, C. M. A., 1966 b. Molecular genetics of avian proteins. VII. The effect of binding various metals on the electrophoretic behaviour of conalbumin. Comp. Biochem. Physiol, in Press.Google Scholar
Baker, C. M. A. & Hanson, H. C, 1966. Molecular genetics of avian proteins. VI. Evolutionary implications of blood proteins of eleven species of geese. Comp. Biochem. Physiol., Vol. 17, pp. 9971006.CrossRefGoogle ScholarPubMed
Baker, C. M. A., Manwell, C, Labisky, R. F. & Harper, J. A., 1966. Molecular genetics of avian proteins. V. Egg, blood and tissue proteins of the ring-necked pheasant,Phasianus colchicus L. Comp. Biochem. Physiol., Vol. 17, pp. 467–99.CrossRefGoogle ScholarPubMed
Burstone, M. S., 1962. Enzyme Histochemistry and its Application in the Study of Neoplasms. New York: Academic Press.Google Scholar
Cushing, J. E., 1964. The blood groups of marine animals. In Adv. mar. Biol., Vol. 2, pp. 85131. Ed. Russell, F. S.. New York: Academic Press.Google Scholar
Dessauer, H. C.JFox, W. & Pough, F. H., 1962. Starch gel electrophoresis of transferrins, esterases, and other plasma proteins of hybrids between two sub-species of whiptail lizard (GenusCnemidiphorus). Copeia, 1962, pp. 767–74.CrossRefGoogle Scholar
Dixon, M. & Webb, E. C, 1964. Enzymes, 2nd edition. London: Longmans.Google Scholar
Ferguson, K. A. & Wallace, A. L. C, 1961. Starch gel electrophoresis of anterior pituitary hormones. Nature, Lond., Vol. 190, pp. 629–30.CrossRefGoogle ScholarPubMed
Fleischman, J. B., 1966. Immunoglobulins. A. Rev. Biochem., Vol. 35, Part II, pp. 835–72.CrossRefGoogle ScholarPubMed
Foreman, C. W., 1964. Tryptic peptide patterns of some mammalian hemoglobins. J. cell. comp. Physiol., Vol. 63, pp. 16.CrossRefGoogle ScholarPubMed
Fox, H. M., 1946. Chemical taxonomy. Nature, Lond., Vol. 157, p. 511.CrossRefGoogle Scholar
Fraser, J., 1962. Nature Adrift. The Story of Marine Plankton. London: G. T. Foulis and Co.CrossRefGoogle Scholar
Frydenberg, O., Moller, D., Naevdal, G. & Sick, K., 1965. Haemoglobin poly-morphism in Norwegian cod populations. Hereditas, Vol. 53, pp. 257–71.CrossRefGoogle Scholar
Harding, J. P., 1963. The chromosomes ofCalanus finmarchicus andC. helgolandicus. Crustaceana, Vol. 6, pp. 81–8.CrossRefGoogle Scholar
Hardy, A. C, 1956. The Open Sea. Its Natural History: the World of Plankton. London: Collins.Google Scholar
Kaplan, N. O., 1963. Symposium on multiple forms of enzymes and control mechanisms. I. Multiple forms of enzymes. Bact. Rev., Vol. 27, pp. 155–69.CrossRefGoogle ScholarPubMed
Kominz, D. R., 1966. Phylogenetic studies of muscle proteins. In Phylogeny of Immunity, pp. 4960. Ed. Smith, R. T., Miescher, P. A. and Good, R. A.. Gainesville, Florida: University of Florida Press.Google Scholar
Kominz, D. R., Maruyama, K., Levenbook, L. & Lewis, M., 1962. Tropomyosin, myosin, and actin from the blowflyPhormia regina. Biochim. biophys. Acta, Vol. 63, pp. 106–16.CrossRefGoogle Scholar
Livingstone, F. B., 1965. The distributions of the abnormal hemoglobin genes and their significance for human evolution. Evolution, Vol. 18, pp. 685–99.CrossRefGoogle Scholar
Long, C. (ed.), 1961. Biochemistscirc' Handbook. London: E. and F. N. Spon, Ltd.Google Scholar
Manwell, C.J 1963a. The blood proteins of cyclostomes: a study in phylogenetic and ontogenetic iochemistry. In The Biology of Myxine, pp. 372455. Ed. A., Brodal, and R., Fange. Oslo, Norway: Universitetsforlaget.Google Scholar
Manwell, C, 1963b. Fetal and adult hemoglobins of the spiny dogfishSqualus suckleyi. Arch. Biochem. Biophys., Vol. 101, pp. 504–11.CrossRefGoogle Scholar
Manwell, C, 1963 c. Genetic control of hemerythrin tissue specificity in a marine worm. Science, N.Y., Vol. 139, pp. 755–8.CrossRefGoogle Scholar
Manwell, C, 1964. Chemistry, genetics and function of invertebrate respiratory pigments—configurational changes and allosteric effects. In Oxygen in the Animal Organism, I.U.B. Symposium Series, Vol. 31, pp. 49119. Ed. F., Dickens and E., Neil. Oxford: Pergamen Press.CrossRefGoogle Scholar
Manwell, C, 1966a. Sea cucumber sibling species: polypeptide chain types and oxygen equilibrium of hemoglobin. Science, N.Y., Vol. 152, pp. 1393–6.CrossRefGoogle ScholarPubMed
Manwell, C, 1966b. Metamorphosis and gene action. I. Electrophoresis of dehydrogenases, esterases, phosphatases, hemoglobins and other soluble proteins of tadpole and adult bullfrogs. Comp. Biochem. Physiol. Vol. 17, pp. 805–23.CrossRefGoogle ScholarPubMed
Manwell, C, 1966c, Starch gel electrophoresis of the multiple haemoglobins of small and large larvalChironomus —a developmental haemoglobin sequence in an invertebrate. J. Embryol. exp. Morph., Vol. 16, pp. 259–70.Google Scholar
Manwell., C. & Baker, C. M. A., 1963a. A sibling species of sea cucumber discovered by starch gel electrophoresis. Comp. Biochem. Physiol., Vol. 10, pp. 3953CrossRefGoogle ScholarPubMed
Manwell, C. & Baker, C. M. A., 1963b. Starch gel electrophoresis of sera from some marine arthropods: studies on the heterogeneity of hemocyanin and on a ‘ceruloplasmin-like protein’. Comp. Biochem. Physiol., Vol. 8, pp. 193208.CrossRefGoogle Scholar
Manwell, C. & Baker, C. M. A., 1966. Evolution of mechanisms for the management of genetic information. In Phytogeny of Immunity, pp. 315. Ed. Smith, R. T., Miescher, P. A. and Good, R. A.. Gainesville, Florida: university of Florida Press.Google Scholar
Manwell, C, Baker, C. M. A. & Betz, T. W., 1966. Ontogeny of haemoglobin in the chicken. J. Embryol. exp. Morph., Vol. 16, pp. 6581.Google ScholarPubMed
Manwell, C, Baker, C. M. A. & Childers, W., 1963. The genetics of haemoglobin in hybrids. I. A molecular basis for hybrid vigor. Comp. Biochem. Physiol., Vol. 10, pp. 103–20.CrossRefGoogle Scholar
Manwell, C. & Betz, T. W., 1966. The effect of embryonic partial decapitation on the developmental sequence of some proteins in the chicken. J. Embryol. exp. Morph., Vol. 16, pp. 83–9.Google ScholarPubMed
Manwell, C. & Kerst, K. V., 1966. Possibilities of biochemical taxonomy of bats using hemoglobin, lactate dehydrogenase, esterases and other proteins. Comp. Biochem. Physiol., Vol. 17, pp. 741–54.CrossRefGoogle ScholarPubMed
Manwell, C. & Schlesinger, C. V., 1966. Polymorphism of turtle hemoglobin and geographical differences in the frequency of variants ofChrysemys picta ‘slow’ hemoglobin—an example of ‘temperature anti-adaptation’? Comp. Biochem. Physiol., Vol. 18, pp. 627–38.Google Scholar
Margoliash, E. & Lustgarten, J., 1961. The chromatographic forms of cytochrome C. Ann. N.Y. Acad. Sci., Vol. 94, Art. 3, pp. 731–40.CrossRefGoogle ScholarPubMed
Marshall, S. M. & Orr, A. P., 1955. The Biology of a Marine Copepod Calanus finmarchicus (Gunnerus). Edinburgh: Oliver and Boyd.Google Scholar
Matthews, J. B. L., 1966a. Experimental investigations of the systematic status ofCalanus finmarchicus andC. glacialis (Crustacea: Copepoda). In Some Contemporary Studies in Marine Science, pp. 479–92. Ed. H., Barnes. London: Allen and Unwin.Google Scholar
Matthews, J. B. L., 1966b. Calanus finmarchicus S. L. in the North Atlantic. The relationships betweenCalanus finmarchicus, S. Str.,C. glacialis andC. helgolandicus. Bull. mar. Ecol. (in the Press).Google Scholar
Moore, R. O. & Villee, C. A., 1963. Multiple molecular forms of malate dehydrogenase in echinoderm embryos. Comp. Biochem. Physiol., Vol. 9, pp. 8194.CrossRefGoogle Scholar
Newell, G. E. & Newell, R. C. 1963. Marine Plankton. A Pratical Guide. London: Hutchinson Educational Ltd.Google Scholar
Patterson, E. K., Hsiao, S. & Keppel, A., 1963. Studies on dipeptidases and aminopeptidases. I. Distinction between leucine aminopeptidase and enzymes that hydrolyse L-leucyl-β-naphthylamide. J. biol. Chem., Vol. 238, pp. 3611–20.CrossRefGoogle Scholar
Rees, C. B., 1949. Continuous plankton records: the distribution ofCalanus finmarchicus (Gunn.) and its two forms in the North Sea, 1938-39. Hull Bull. mar. Biol., Vol. 2, pp. 215–75.Google Scholar
Ridgway, G. J., 1962. The application of some special immunological methods to marine population problems. Am. Nat., Vol. 96, pp. 219–29.CrossRefGoogle Scholar
Russell, F. S., 1951. A re-examination ofCalanus collected off Plymouth. J. mar. biol. Ass. U.K., Vol. 30, pp. 313–14.CrossRefGoogle Scholar
Sars, G.J 1903. Copepoda, Calanoida. An Account of the Crustacea of Norway, Vol. 4, 171 pp. Bergen, Norway.Google Scholar
Schultze, H. E. & Heremans, J. F., 1966. Molecular Biology of Human Proteins with Special Reference to Plasma Proteins. Vol. 1. Nature and Metabolism of Extra-cellular Proteins. Amsterdam: Elsevier.Google Scholar
Shaw, C. R., 1965. Electrophoretic variation in enzymes. Science, N.Y., Vol. 149, pp. 936–43CrossRefGoogle ScholarPubMed
Shaw, C. R. & Koen, A. L., 1965. On the identity of ‘nothing dehydrogenase’. J. Histochem. Cytochem., Vol. 13, pp. 431–3.CrossRefGoogle ScholarPubMed
Sibley, C. G., 1960. The electrophoretic patterns of avian egg-white proteins as taxonomic characters. Ibis, Vol. 102, pp. 215–84.CrossRefGoogle Scholar
Sibley, C. G. & Johnsgard, P. A., 1959. Variability In The Electrophoretic Patterns Of Avian Serum Proteins. Condor, Vol. 6, pp. 8595.CrossRefGoogle Scholar
Sick, K., 1965a. Haemoglobin polymorphism of cod in the Baltic and the Danish Belt Sea. Hereditas, Vol. 43, pp. 1948.Google Scholar
Sick, K., 1965b. Haemoglobin polymorphism of cod in the North Sea and the North Atlantic Ocean. Hereditas, Vol. 54, pp. 4973.CrossRefGoogle ScholarPubMed
Tashian, R. E., 1965. Genetic variation and evolution of the carboxylic esterases and carbonic anhydrases of primate erythrocytes. Am. J. human Genetics, Vol. 17, pp. 257–72.Google ScholarPubMed
Thompson, P. E. & English, D. S., 1966. Multiplicity of hemoglobins in the Genus Chironomus (Tendipes). Science, N.Y., Vol. 152, pp. 75–6.CrossRefGoogle ScholarPubMed
Wilson, A. C. & Kaplan, N. O., 1964. Enzyme structure and its relation to taxonomy. In Taxonomic Biochemistry and Serology, pp. 321–46. Ed. Leone, S. A.. New York: Ronald Press.Google Scholar