Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T01:01:15.273Z Has data issue: false hasContentIssue false

Benthic macrofauna associated with decomposition of leaves in a mangrove forest in Ilhéus, State of Bahia, Brazil

Published online by Cambridge University Press:  21 October 2011

Alexandra Bomfim de Oliveira*
Affiliation:
Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, 45662-900, Ilhéus, BA, Brazil
Alexandra Elaine Rizzo
Affiliation:
Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Departamento de Zoologia, Rua São Francisco Xavier 524, 20550-013, Maracanã, Rio de Janeiro, RJ, Brazil
Erminda da Conceição
Affiliation:
Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, 45662-900, Ilhéus, BA, Brazil
Guerreiro Couto
Affiliation:
Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, 45662-900, Ilhéus, BA, Brazil
*
Correspondence should be addressed to: A.B. de Oliveira, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, 45662-900, Ilhéus, BA, Brazil email: [email protected]

Abstract

We identified and quantified the benthic macrofauna associated with decomposing leaves of Rhizophora mangle and Laguncularia racemosa, to observe the differences in the abundance and composition of macrofauna between these mangrove species, and to examine whether the abundance and composition of organisms changed with different stations and collection times. Benthic macrofauna, mainly polychaetes and amphipods, were recorded from the fifth day after the installation of the experiment. Annelids including Oligochaeta and Polychaeta were the most numerous group. Crustacea were represented by peracarids (Amphipoda and Tanaidacea) and decapods. Of Hexapoda, only juvenile forms and pupae were present. The most abundant polychaete species was Perinereis brevicirrata, followed by Capitella cf. capitata, Heteromastus filiformis and Neanthes succinea. In one-way analysis of variance (ANOVA) there were no statistical differences between the macrofauna of mangrove species, seasons, or collection times, except among collection times for R. mangle litter bags. Two-way ANOVA showed homogeneity for macrofauna abundance between the groups of collection times for both mangrove species. The richness was similar for R. mangle litter bags, and showed a significant difference for L. racemosa. Abundance and richness were also similar between the mangrove species. The colonization of detritus by benthic invertebrates followed a successional sequence during the decomposition process. This suggests that the density of these organisms and their foraging behaviour affected the decomposition rates of leaves of R. mangle and L. racemosa.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adaime, R.R. (1985) Produção do bosque de mangue da Gambôa Nóbrega (Cananéia, 25° lat. S—Brasil). PhD thesis. Instituto Oceanográfico, Universidade de São Paulo, São Paulo, Brazil.Google Scholar
Aké-Castillo, J.A., Vázquez, G. and López-Portillo, J. (2006) Litterfall and decomposition of Rhizophora mangle L. in a coastal lagoon in the southern Gulf of Mexico. Hydrobiologia 559, 101111.Google Scholar
Ashton, E. -C., Hogarth, P. -J. and Ormond, R. (1999) Breakdown of mangrove leaf litter in a managed mangrove forest in Peninsular Malaysia. Hydrobiologia 413, 7788.Google Scholar
Bosire, J.-O., Dahdouh-Guebas, F., Kairo, J.-G., Kazungu, J., Dehairs, F. and Koedam, D. (2005) Litter degradation and CN dynamics in reforested mangrove plantations at Gazi Bay, Kenya. Biological Conservation 126, 287295.Google Scholar
Couto, E.C.G. and Lima, G.C. (1997) Decomposição de Laguncularia racemosa Gaertn. em diferentes regimes de inundação no manguezal da Ilha das Tartarugas (Sta. Luiza do Itanhy—SE). In Actas X Semana de Geoquímica/IV Congresso de Geoquímica dos Países de Língua Portuguesa. Anais, Braga, Portugal.Google Scholar
Elison, A.M. (2008) Managing mangroves with benthic biodiversity in mind: moving beyond roving banditry. Journal of Sea Research 59, 215.Google Scholar
Fauchald, K. and Jumars, P.A. (1979) The diet of worms: a study of polychaete feeding guilds. Oceanography and Marine Biology: an Annual Review 17, 193284.Google Scholar
Kanaya, G. and Kikuchi, E. (2008) Spatial changes in a macrozoobenthic community along environmental gradients in a shallow brackish lagoon facing Sendai Bay, Japan. Estuarine, Coastal and Shelf Science 78, 674684.Google Scholar
Kristensen, E., Bouillon, S., Dittmar, T. and Marchand, C. (2008) Organic carbon dynamics in mangrove ecosystems: a review. Aquatic Botany 89, 201219.Google Scholar
Martins, P.T.A. (2008) Análise de intervenções antrópicas no manguezal do Rio Cachoeira, Ilhéus, Bahia. MSc dissertation. Universidade Federal de Sergipe, Sergipe, Brazil.Google Scholar
Middleton, B.A. and Mckee, K.L. (2001) Degradation of mangrove tissues and implications for peat formation in Belizean island forests. Journal of Ecology 89, 818828.Google Scholar
Muniz, P. and Venturini, N. (2001) Spatial distribution of the macrozoobenthos in the Solís Grande Stream Estuary (Canelones–Maldonado, Uruguay). Brazilian Journal of Biology 61, 409420.Google Scholar
Nacif, P.G.S., Costa, L.M., Saadi, A., Fernandes-Filho, E.I. and Kosta, O.V. (2004) Ambientes Naturais da Bacia Hidrográfica do Rio Cachoeira. In Prado, P.I., Landau, C.E., Teixeira de Moura, R., Pinto, L.P., Alger, K. and Fonseca, G. (orgs) Corredor de Biodiversidade da Mata Atlântica do Sul da Bahia. 1st edition. Ilhéus: IESB/International Conservation /CABS/UFMG, p. 71.Google Scholar
Odum, W.E. and Heald, E.J. (1975) Mangrove forests and aquatic productivity. In Hasler, A.O. (ed.) An introduction to land–water interactions. Berlin: Springer-Verlag, pp. 129136.Google Scholar
Oliveira, A.B., Rizzo, A.E. and Couto, E.C.G. (in press) Decomposition of Rhizophora mangle and Laguncularia racemosa leaves in a mangrove at Ilhéus, state of Bahia, northeast Brazil. Estuarine, Coastal and Shelf Science.Google Scholar
Paiva, A.C.G., Coelho, P.A. and Torres, M.F.A. (2005) Influência dos fatores abióticos sobre a macrofauna de substratos inconsolidados da zona entre-marés no Canal de Santa Cruz, Pernambuco, Brasil. Arquivos de Ciências do Mar 38, 8592.Google Scholar
Ponte, A.C.E., Fonseca, I.A.Z., Marques, M., Freitas, M.L. and Claro, M.S.C.A. (1984) Produção de serapilheira e decomposição do material foliar em ecossistema de mangue. In Congresso Sociedade Botânica de São Paulo, São Paulo, SP. São Paulo, Brazil: Anais.Google Scholar
Santos, D.F. (2007) Distribuição do carbono inorgânico total e estimativa qualitativa do balanço autotrofia/heterotrofia no estuário do Rio Cachoeira, Ilhéus, Bahia. MSc dissertation. Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil.Google Scholar
Santos, L.L. (2009) Estrutura e serapilheira em um manguezal de Ilhéus, Bahia, Brasil. MSc dissertation. Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil.Google Scholar
SEPLANTEC (Secretaria de Desenvolvimento do Estado da Bahia) (1993) Informações básicas dos municípios baianos: região litoral sul. Salvador, Brazil: Estado da Bahia.Google Scholar
Silva, M.A.M. (2007) Nutrientes inorgânicos dissolvidos e clorofila-a na coluna de água no estuário do Rio Cachoeira, Ilhéus—BA. MSc dissertation. Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil.Google Scholar
Souza, M.F.L. (2005) Nutrient biogeochemistry and mass balance of a tropical estuary: estuary of Cachoeira River, Northern Brazil. International Journal of Ecology and Environmental Sciences 31, 177188.Google Scholar
Ysebaert, T., Meire, P., Coosen, J. and Essink, K. (1998) Zonation of intertidal macrobenthos in the estuaries of Schelde and Ems. Aquatic Ecology 32, 5371.Google Scholar