Published online by Cambridge University Press: 05 July 2001
Let Σg be a compact Riemann surface of genus g, and G = SU(n). The central element c = diag(e2πid/n, …, e2πid/n) for d coprime to n is introduced. The Verlinde formula is proved for the Riemann–Roch number of a line bundle over the moduli space [Mscr ]g, 1(c, Λ) of representations of the fundamental group of a Riemann surface of genus g with one boundary component, for which the loop around the boundary is constrained to lie in the conjugacy class of cexp(Λ) (for Λ ∈ t+), and also for the moduli space [Mscr ]g, b(c, Λ) of representations of the fundamental group of a Riemann surface of genus g with s + 1 boundary components for which the loop around the 0th boundary component is sent to the central element c and the loop around the jth boundary component is constrained to lie in the conjugacy class of exp(Λ(j)) for Λ(j) ∈ t+. The proof is valid for Λ(j) in suitable neighbourhoods of 0.