Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-07T10:37:58.265Z Has data issue: false hasContentIssue false

SPLENDID DERIVED EQUIVALENCES FOR BLOCKS OF FINITE GROUPS

Published online by Cambridge University Press:  01 August 1999

MORTON E. HARRIS
Affiliation:
School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA
Get access

Abstract

A central issue in finite group modular representation theory is the relationship between the p-local structure and the p-modular representation theory of a given finite group. In [5], Broué poses some startling conjectures. For example, he conjectures that if e is a p-block of a finite group G with abelian defect group D and if f is the Brauer correspondent block of e of the normalizer, NG(D), of D then e and f have equivalent derived categories over a complete discrete valuation ring with residue field of characteristic p. Some evidence for this conjecture has been obtained using an important Morita analog for derived categories of Rickard [11]. This result states that the existence of a tilting complex is a necessary and sufficient condition for the equivalence of two derived categories. In [5], Broué also defines an equivalence on the character level between p-blocks e and f of finite groups G and H that he calls a ‘perfect isometry’ and he demonstrates that it is a consequence of a derived category equivalence between e and f. In [5], Broué also poses a corresponding perfect isometry conjecture between a p-block e of a finite group G with an abelian defect group D and its Brauer correspondent p-block f of NG(D) and presents several examples of this phenomena. Subsequent research has provided much more evidence for this character-level conjecture.

In many known examples of a perfect isometry between p-blocks e, f of finite groups G, H there are also perfect isometries between p-blocks of p-local subgroups corresponding to e and f and these isometries are compatible in a precise sense. In [5], Broué calls such a family of compatible perfect isometries an ‘isotypy’.

In [11], Rickard addresses the analogous question of defining a p-locally compatible family of derived equivalences. In this important paper, he defines a ‘splendid tilting complex’ for p-blocks e and f of finite groups G and H with a common p-subgroup P. Then he demonstrates that if X is such a splendid tilting complex, if P is a Sylow p-subgroup of G and H and if G and H have the same ‘p- local structure’, then p-local splendid tilting complexes are obtained from X via the Brauer functor and ‘lifting’. Consequently, in this situation, we obtain an isotypy when e and f are the principal blocks of G and H.

Linckelmann [9] and Puig [10] have also obtained important results in this area.

In this paper, we refine the methods and program of [11] to obtain variants of some of the results of [11] that have wider applicability. Indeed, suppose that the blocks e and f of G and H have a common defect group D. Suppose also that X is a splendid tilting complex for e and f and that the p-local structure of (say) H with respect to D is contained in that of G, then the Brauer functor, lifting and ‘cutting’ by block indempotents applied to X yield local block tilting complexes and consequently an isotypy on the character level. Since the p-local structure containment hypothesis is satisfied, for example, when H is a subgroup of G (as is the case in Broué's conjectures) our results extend the applicability of these ideas and methods.

Type
Notes and Papers
Copyright
The London Mathematical Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research was partially supported by NSA Grant MDA904 92-H-3027 and by CNRS (France) and the Mathematics Department of the University of Paris 7.