Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T22:12:26.885Z Has data issue: false hasContentIssue false

NORMAL TRANSVERSALITY AND UNIFORM BOUNDS

Published online by Cambridge University Press:  19 February 2001

FRANCESC PLANAS-VILANOVA
Affiliation:
Departament de Matemàtica Aplicada 1, ETSEIB, Universitat Politècnica de Catalunya, Diagonal 647, E-08028 Barcelona, Spain; [email protected]
Get access

Abstract

Let A be a commutative ring. A graded A-algebra U = [oplus ]n[ges ]0 is a standard A-algebra if U0 = A and U = A[U1] is generated as an A-algebra by the elements of U1. A graded U-module F = [oplus ]n[ges ]0Fn is a standard U-module if F is generated as a U-module by the elements of F0, that is, Fn = UnF0 for all n [ges ] 0. In particular, Fn = U1Fn−1 for all n [ges ] 1. Given I, J, two ideals of A, we consider the following standard algebras: the Rees algebra of I, [Rscr ](I) = [oplus ]n[ges ]0Intn = A[It] ⊂ A[t], and the multi-Rees algebra of I and J, [Rscr ](I, J) = [oplus ]n[ges ]0([oplus ]p+q=nIpJqupvq) = A[Iu, Jv] ⊂ A[u, v]. Consider the associated graded ring of I, [Gscr ](I) = [Rscr ](I) [otimes ] A/I = [oplus ]n[ges ]0In/In+1, and the multi-associated graded ring of I and J, [Gscr ](I, J) = [Rscr ](I, J) [otimes ] A/(I+J) = [oplus ]n[ges ]0([oplus ]p+q= nIpJq/(I+J)IpJq). We can always consider the tensor product of two standard A-algebras U = [oplus ]p[ges ]0Up and V = [oplus ]q[ges ]0Vq as a standard A-algebra with the natural grading U [otimes ] V = [oplus ]n[ges ]0([oplus ]p+q=nUp [otimes ] Vq). If M is an A-module, we have the standard modules: the Rees module of I with respect to M, [Rscr ](I; M) = [oplus ]n[ges ]0InMtn = M[It] ⊂ M[t] (a standard [Rscr ](I)-module), and the multi-Rees module of I and J with respect to M, [Rscr ](I, J; M) = [oplus ]n[ges ]0([oplus ]p+q=nIpJqMupvq) = M[Iu, Jv] ⊂ M[u, v] (a standard [Rscr ](I, J)-module). Consider the associated graded module of M with respect to I, [Gscr ](I; M) = [Rscr ](I; M) [otimes ] A/I = [oplus ]n[ges ]0InM/In+1M (a standard [Gscr ](I)-module), and the multi-associated graded module of M with respect to I and J, [Gscr ](I, J; M) = [Rscr ](I, J; M) [otimes ] A/(I+J) = [oplus ]n[ges ]0([oplus ]p+q= nIpJqM/ (I+J)IpJqM) (a standard [Gscr ](I, J)-module). If U, V are two standard A-algebras, F is a standard U-module and G is a standard V-module, then F [otimes ] G = [oplus ]n[ges ]0([oplus ]p+q= nFp [otimes ] Gq) is a standard U [otimes ] V-module.

Denote by π[ratio ][Rscr ](I) [otimes ] [Rscr ](J; M) → [Rscr ](I, J; M) and σ[ratio ][Rscr ](I, J; M) → [Rscr ](I+J; M) the natural surjective graded morphisms of standard [Rscr ](I) [otimes ] [Rscr ](J)-modules. Let ϕ[ratio ][Rscr ](I) [otimes ] [Rscr ](J; M) → [Rscr ](I+J; M) be σ∘π. Denote by &πmacr;[ratio ][Gscr ](I) [otimes ] [Gscr ](J; M) → [Gscr ](I, J; M) and &σmacr;[ratio ][Gscr ](I, J; M) → [Gscr ](I+J; M) the tensor product of π and σ by A/(I+J); these are two natural surjective graded morphisms of standard [Gscr ](I) [otimes ] [Gscr ](J)-modules. Let &ϕmacr;[ratio ][Gscr ](I) [otimes ] [Gscr ](J; M) → [Gscr ](I+J; M) be &σmacr;∘&πmacr;. The first purpose of this paper is to prove the following theorem.

Type
Research Article
Copyright
The London Mathematical Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)