Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T16:20:59.935Z Has data issue: false hasContentIssue false

MAXIMAL OPERATORS FOR THE HOLOMORPHIC ORNSTEIN–UHLENBECK SEMIGROUP

Published online by Cambridge University Press:  25 March 2003

J. GARCÍA-CUERVA
Affiliation:
Departamento de Matemáticas, C-XV Universidad Autónoma, 28049 Madrid, [email protected]
G. MAUCERI
Affiliation:
Dipartimento di Matematica, via Dodecaneso 35, 16146 Genova IT-16146, [email protected]
S. MEDA
Affiliation:
Dipartimento di Matematica, Università di Milano-Bicocca, via Bicocca degli Arcimboldi 8, IT-20126 Milano, [email protected]
P. SJÖGREN
Affiliation:
Department of Mathematics, Chalmers University of Technology and Göteborg University, S-412 96 Göteborg, [email protected]
J. L. TORREA
Affiliation:
Departamento de Matemáticas, C-XV Universidad Autónoma, 28049 Madrid, [email protected]
Get access

Abstract

For each $p$ in $[1, \infty)$ let ${\bf E}_p$ denote the closure of the region of holomorphy of the Ornstein–Uhlenbeck semigroup $\{{\cal H}_t : t >0\}$ on $L^p$ with respect to the Gaussian measure. Sharp weak type and strong type estimates are proved for the maximal operator $f \mapsto {{\cal H}^*}_pf=\sup\{\vert {\cal H}_zf\vert :z\in {\bf E}_p\}$ and for a class of related operators. As a consequence, a new and simpler proof of the weak type 1 estimate is given for the maximal operator associated to the Mehler kernel.

Type
Notes and Papers
Copyright
The London Mathematical Society, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)