Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T19:59:12.434Z Has data issue: false hasContentIssue false

Verbal Fluency in Parkinson’s Patients with and without Bilateral Deep Brain Stimulation of the Subthalamic Nucleus: A Meta-analysis

Published online by Cambridge University Press:  02 February 2016

Kathryn A. Wyman-Chick*
Affiliation:
Pacific University, Hillsboro, Oregon
*
Correspondence and reprint requests to: Kathryn A. Wyman-Chick, Pacific University, 190 SE 8th Avenue, Hillsboro, OR 97123. E-mail: [email protected]

Abstract

Objectives: Patients with Parkinson’s disease often experience significant decline in verbal fluency over time; however, deep brain stimulation of the subthalamic nucleus (STN-DBS) is also associated with post-surgical declines in verbal fluency. The purpose of this study was to determine if Parkinson’s patients who have undergone bilateral STN-DBS have greater impairment in verbal fluency compared to Parkinson’s patients treated by medication only. Methods: A literature search yielded over 140 articles and 10 articles met inclusion criteria. A total of 439 patients with Parkinson’s disease who underwent bilateral STN-DBS and 392 non-surgical patients were included. Cohen’s d, a measure of effect size, was calculated using a random effects model to compare post-treatment verbal fluency in patients with Parkinson’s disease who underwent STN-DBS versus those in the non-surgical comparison group. Results: The random effects model demonstrated a medium effect size for letter fluency (d=−0.47) and a small effect size for category fluency (d=−0.31), indicating individuals with bilateral STN-DBS had significantly worse verbal fluency performance than the non-surgical comparison group. Conclusions: Individuals with Parkinson’s disease who have undergone bilateral STN-DBS experience greater deficits in letter and category verbal fluency compared to a non-surgical group. (JINS, 2016, 22, 478–485)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Birn, R.M., Kenworthy, L., Case, L., Caravella, R., Jones, T.B., Bandettini, P.A., & Martin, A. (2010). Neural systems supporting lexical search guided by letter and semantic category cues: A self-paced overt response fMRI study of verbal fluency. Neuroimage, 49(1), 10991107. doi:10.1016/j.neuroimage.2009.07.036 Google Scholar
Bronnick, K. (2005). Cognitive profile in Parkinson’s disease dementia. In M. Emre (Ed.), Cognitive impairment and dementia in Parkinson’s disease (pp. 2743). New York: Oxford University Press.Google Scholar
Bronstein, J.M., Tagliati, M., Alterman, R.L., Lozano, A.M., Volkmann, J., Stefani, A., & DeLong, M.R. (2011). Deep brain stimulation for Parkinson’s disease: An expert consensus and review of key issues. Archives of Neurology, 68(2), 165. doi:10.1001/archneurol.2010.260 CrossRefGoogle ScholarPubMed
Castelli, L., Rizzi, L., Zibetti, M., Angrisano, S., Lanotte, M., & Lopiano, L. (2010). Neuropsychological changes 1-year after subthalamic DBS in PD patients: A prospective controlled study. Parkinsonism & Related Disorders, 16(2), 115118. doi:10.1016/j.parkreldis.2009.08.010 CrossRefGoogle ScholarPubMed
Cilia, R., Chiara, S., Marotta, G., DeGaspari, D., Landi, A., Mariani, C.B., & Antonini, A. (2007). Brain networks underlining verbal fluency decline during STN-DBS in Parkinson’s disease: An ECD-SPECT study. Parkinsonism & Related Disorders, 13, 290294. doi:10.1016/j.parkreldis.2006.22.011 Google Scholar
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). New Jersey: Lawrence Erlbaum Associates Inc.Google Scholar
Contarino, M.F., Daniele, A., Sibilia, A.H., Romito, L.M., Bentivoglio, A.R., Gainotti, G., & Albanese, A. (2007). Cognitive outcome 5 years after bilateral chronic stimulation of subthalamic nucleus in patients with Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 78, 248252. doi:10.1136/jnnp2005.086660 Google Scholar
Doesborgh, S.J., Dippel, D.W., van Harskamp, F., Koudstaal, P.J., & Visch-Brink, E.G. (2002). The impact of linguistic deficit on verbal communication. Aphasology, 16, 413423.CrossRefGoogle Scholar
Ehlen, F., Krugel, L.K., Vonberg, I., Schoenecker, T., Kuhn, A.A., & Klostermann, F. (2013). Intact lexicon running slowly: Prolonged response latencies in patients with subthalamic DBS and verbal fluency deficits. PLOS One, 8(11), e79247.Google Scholar
Fields, J.A. (2015). Effects of deep brain stimulation in movement disorders on cognition and behavior. In A.I. Troster (Ed.), Neuropsychology and cognitive neurology of Parkinson’s disease and other movement disorders (pp. 333375). New York, NY: Oxford.Google Scholar
Fields, J.A., Troster, A.I., Wilkinson, S.B., Rahwa, R., & Koller, W.C. (1999). Cognitive outcome following staged bilateral pallidal stimulation for the treatment of Parkinson’s disease. Clinical Neurology and Neurosurgery, 101, 182188.Google Scholar
Floden, D., Cooper, S.E., Griffith, S.D., & Machado, A.G. (2014). Predicting quality of life outcomes after subthalamic nucleus deep brain stimulation. Neurology, 83(18), 16271633. doi:10.1212/WNL.0000000000000943 Google Scholar
Gotham, A.M., Brown, R.G., & Marsden, C.D. (1988). Frontal cognitive function in patients with Parkinson’s disease ‘on’ and ‘off’ Levodopa. Brain, 111, 299321.CrossRefGoogle ScholarPubMed
Henry, J.D., & Crawford, J.R. (2004). Verbal fluency deficits in Parkinson’s disease: A meta-analysis. Journal of the International Neuropsychological Society, 10(4), 608622. doi:10.1017/S1355617704104141 Google Scholar
Heo, J.H., Lee, K.M., Paek, S.H., Kim, M.J., Lee, J.Y., Kim, J.Y., & Jeon, B.S. (2008). The effects of bilateral subthalamic nucleus deep brain stimulation on cognition in Parkinson’s disease. Journal of the Neurological Science, 273, 1924. doi:10.1016/j.jns.2008.06.010 Google Scholar
Hoaglin, D.C., & Iglewicz, B. (1987). Fine tuning some resistant rules for outlier labeling. Journal of American Statistical Association, 82, 11471149.Google Scholar
Kleiner-Fisman, G., Herzog, J., Fisman, D.N., Flippo, T., Lyons, K.E., Pahwa, R., & Deuschl, G. (2006). Subthalamic nucleus deep brain stimulation: Summary and meta-analysis of outcomes. Movement Disorders, 21(S14), S290S304. doi:10.1002/mds.20962 Google Scholar
Lezak, M.D., Howieson, D.B., Bigler, E.D., & Tranel, D. (2012). Neuropsychological assessment (5th ed.), New York: Oxford University Press.Google Scholar
Lipsey, M.W., & Wilson, D. (2000). Practical meta-analysis. London: SAGE Publications.Google Scholar
Marshall, D.F., Strutt, A.M., Williams, A.E., Simpson, R.K., Jankovic, J., & York, M.K. (2012). Alternating verbal fluency performance following bilateral subthalamic nucleus deep brain stimulation for Parkinson’s disease. European Journal of Neurology, 19(12), 15251531. doi:10.1111/j.1468-1331.2012.03759.x Google Scholar
Mikos, A., Bowers, D., Noecker, A.M., McIntyre, C.C., Won, M., Chaturvedi, A., & Okun, M.S. (2011). Patient-specific analysis of the relationship between the volume of tissue activated during DBS and verbal fluency. Neuroimage, 54(S1), S238S246. doi:10.1016/j.neuroimage.2010.03.068 Google Scholar
Morrison, C.E., Borod, J.C., Perrine, K., Beric, A., Brin, M.F., Rezai, A., & Olanow, C.W. (2004). Neuropsychological functioning following bilateral subthalamic nucleus stimulation in Parkinson’s disease. Archives of Clinical Neurology, 19(2), 165181. doi:10.1016/S0887-6177(03)00004-0 Google Scholar
Muslimovic, D., Post, B., Speelman, J.D., Schmand, B., & de Haan, R.J. (2008). Determinants of disability and quality of life in mild to moderate Parkinson disease. Neurology, 70, 22412247.Google Scholar
National Research Council (1992). Combining information: Statistical issues and opportunities for research. Washington, DC: National Academy Press.Google Scholar
Okun, M.S., Fernandez, H.H., Kirsch-Darrow, L., Bowers, D., Bova, F., Suelter, M., & Foote, K.D. (2009). Cognition and mood in Parkinson’s disease in subthalamic versus globus pallidus interna deep brain stimulation: The COMPARE trial. Annals of Neurology, 65(5), 586595. doi:10.1002/ana.21596 Google Scholar
Okun, M.S., Gallo, B.V., Mandybur, G., Jagid, J., Foote, K.D., Revillo, F.J., & Tagliati, M. (2012). Subthalamic deep brain stimulation with constant-current device in Parkinson’s disease. An open-label randomized controlled trial. Lancet Neurology, 11, 140149. doi:10.1016.S1474-442(11)70308-8 Google Scholar
Orwin, R.G. (1983). A fail-safe N for effect size in meta-analysis. Journal of Educational Statistics, 8(2), 157159. doi:10.2307/1164923 Google Scholar
Parsons, T.D., Rogers, S.A., Braaten, A.J., Woods, S.P., & Troster, A.I. (2006). Cognitive sequelae of subthalamic nucleus deep brain stimulation in Parkinson’s disease: A meta-analysis. Lancet Neurology, 5(7), 578588. doi:10.1016/S1474-4422(06)70475-6 CrossRefGoogle ScholarPubMed
Rinehardt, E., Duff, K., Schoenberg, M., Mattingly, M., Bharucha, K., & Scott, J. (2010). Cognitive change on the repeatable battery of neuropsychological status (RBANS) in Parkinson’s disease with and without bilateral subthalamic nucleus deep brain stimulation surgery. The Clinical Neuropsychologist, 24(8), 13391354. doi:10.1080/13854046.2010.521770 Google Scholar
Rothlind, J.C., Cockshott, R.W., Starr, P.A., & Marks, W.J. (2007). Neuropsychologial performance following staged bilateral pallidal or subthalamic nucleus deep brain stimulation for Parkinson’s disease. Journal of the International Neuropsychological Society, 13, 6879. doi:10.1017/S17707070105 CrossRefGoogle ScholarPubMed
Sjoberg, R.L., Lidman, E., Haggstrom, B., Hariz, M.I., Linder, J., Fredricks, A., & Blomstedt, P. (2012). Verbal fluency in patients receiving bilateral versus left-sided deep brain stimulation of the subthalamic nucleus for Parkinson’s disease. Journal of the International Neuropsychological Society, 18, 606611. doi:10.1017/S1355617711001925 Google Scholar
Smeding, H.M., Speelman, J.D., Koning-Haanstra, M., Schuurman, P.R., Nijssen, P., van Laar, T., & Schmand, B. (2006). Neuropsychological effects of bilateral STN stimulation in Parkinson’s disease: A controlled study. Neurology, 66(12), 18301836. doi:10.1212/01.wnl.0000234881.77830.66 Google Scholar
Weaver, F.M., Follett, K., Stern, M., Hur, K., Harris, C., Marks, W.J., & Huang, G.D. (2009). Deep brain stimulation vs best medical therapy for patients with advanced Parkinson’s disease: A randomized control trial. Journal of the American Medical Association, 301(1), 6373.Google Scholar
Williams, A.E., Arzola, G.M., Strutt, A.M., Simpson, R., Jankovic, J., & York, M.K. (2011). Cognitive outcome and reliable change indices two years following bilateral subthalamic nucleus deep brain stimulation. Parkinsonism & Related Disorders, 17(5), 321327. doi:10.1016/j.parkreldis.2011.01.011 CrossRefGoogle ScholarPubMed
Witt, K., Daniels, C., Reiff, J., Krack, P., Volkmann, J., O Pinsker, M., Deuschl, G. (2008). Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson’s disease: A randomized multicentre study. Lancet Neurology, 7(7), 605614. doi:10.1016/S1474-4422(08)70137-6 CrossRefGoogle Scholar
Witt, K., Granert, O., Daniels, C., Volkmann, J., Falk, D., van Eimeren, T., & Deuschl, G. (2013). Relation of the trajectory and electrode position to neuropsychological outcomes of subthalamic neurostimulation in Parkinson’s disease: Results from a randomized trial. Brain, 136, 21092119. doi:10.1093/brainawt151 Google Scholar
Zahodne, L.B., Okun, M.S., Foote, K.D., Fernandez, H.H., Rodriguez, R.L., Kirsch-Darrow, L., & Bowers, D. (2009). Cognitive declines one year after unilateral deep brain stimulation surgery in Parkinson’s disease: A controlled study using reliable change. The Clinical Neuropsychologist, 23(3), 385405. doi:10.1080/13854040802360582 CrossRefGoogle ScholarPubMed
Zangaglia, R., Pacchetti, C., Pasotti, C., Mancini, F., Servello, D., Sinforiani, E., & Nappi, G. (2009). Deep brain stimulation and cognitive functions in Parkinson’s disease: A three-year controlled study. Movement Disorders, 24(11), 16211628. doi:10.1002/mds.22603 Google Scholar