Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-24T19:24:44.308Z Has data issue: false hasContentIssue false

Verbal and Visuospatial Span in Logopenic Progressive Aphasia and Alzheimer's Disease

Published online by Cambridge University Press:  08 January 2013

David G. Foxe
Affiliation:
Neuroscience Research Australia, Barker Street, Randwick, Sydney, Australia
Muireann Irish
Affiliation:
Neuroscience Research Australia, Barker Street, Randwick, Sydney, Australia School of Medical Sciences, The University of New South Wales, Sydney, Australia ARC Centre of Excellence in Cognition and its Disorders, The University of New South Wales, Sydney, Australia
John R. Hodges
Affiliation:
Neuroscience Research Australia, Barker Street, Randwick, Sydney, Australia School of Medical Sciences, The University of New South Wales, Sydney, Australia ARC Centre of Excellence in Cognition and its Disorders, The University of New South Wales, Sydney, Australia
Olivier Piguet*
Affiliation:
Neuroscience Research Australia, Barker Street, Randwick, Sydney, Australia School of Medical Sciences, The University of New South Wales, Sydney, Australia ARC Centre of Excellence in Cognition and its Disorders, The University of New South Wales, Sydney, Australia
*
Correspondence and reprint requests to: Olivier Piguet, Neuroscience Research Australia, Barker Street, Randwick NSW 2031, Australia. E-mail: [email protected]

Abstract

Logopenic progressive aphasia (LPA) is a form of primary progressive aphasia (PPA) characterized by hesitant speech with marked impairment in naming and repetition. LPA is associated with brain atrophy in the left temporal and inferior parietal cortices and is predominantly associated with Alzheimer's disease (AD) pathology. In contrast to LPA, “typical” AD is commonly associated with episodic memory disturbance and bilateral medial temporal lobe atrophy. Recent evidence suggests verbal short-term memory is more impaired than visuospatial short-term memory in LPA. This study investigated verbal and visuospatial short-term memory in 12 LPA and 12 AD patients matched for disease severity, and in 12 age- and education-matched healthy controls. Overall, both patient groups showed significantly reduced verbal and visuospatial spans compared with controls. In addition, LPA patients performed significantly worse than AD patients on both forward and backward conditions of the Digit Span task. In contrast, no difference was present between patient groups on either version of the Spatial Span task. Importantly, LPA patients showed better visuospatial than verbal span whereas AD patients and controls did not differ across modality. This study demonstrates the specificity of the short-term memory disturbance in LPA, which arises from a breakdown of the phonological system. (JINS, 2012, 19, 1–7)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829839.CrossRefGoogle ScholarPubMed
Baddeley, A., Emslie, H., Nimmo-Smith, I. (1994). Doors and people. Bury St Edmunds: Thames Valley Test Company.Google Scholar
Benton, A.L., Hamsher, deS., Sivian, A.B. (1994). Multilingual aphasia examination (3rd ed.). Iowa City: AJA Associates, Inc.Google Scholar
Bor, D., Duncan, J., Lee, A.C., Parr, A., Owen, A.M. (2006). Frontal lobe involvement in spatial span: Converging studies of normal and impaired function. Neuropsychologia, 44(2), 229237.CrossRefGoogle ScholarPubMed
Braak, H., Braak, E. (1995). Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiology of Aging, 16(3), 271278.CrossRefGoogle ScholarPubMed
Carlesimo, G.A., Fadda, L., Lorusso, S., Caltagirone, C. (1994). Verbal and spatial memory spans in Alzheimer's and multi-infarct dementia. Acta Neurologica Scandinavica, 89(2), 132138.CrossRefGoogle ScholarPubMed
Carlesimo, G.A., Mauri, M., Graceffa, A.M., Fadda, L., Loasses, A., Lorusso, S., Caltagirone, C. (1998). Memory performances in young, elderly, and very old healthy individuals versus patients with Alzheimer's disease: Evidence for discontinuity between normal and pathological aging. Journal of Clinical and Experimental Neuropsychology, 20(1), 1429.CrossRefGoogle ScholarPubMed
Collette, F., Van der Linden, M., Bechet, S., Salmon, E. (1999). Phonological loop and central executive functioning in Alzheimer's disease. Neuropsychologia, 37(8), 905918.CrossRefGoogle ScholarPubMed
D'Esposito, M., Aguirre, G.K., Zarahn, E., Ballard, D., Shin, R.K., Lease, J. (1998). Functional MRI studies of spatial and nonspatial working memory. Brain Research Cognitive Brain Research, 7(1), 113.CrossRefGoogle ScholarPubMed
Desikan, R.S., Cabral, H.J., Hess, C.P., Dillon, W.P., Glastonbury, C.M., Weiner, M.W., … Alzheimer's Disease Neuroimaging Initiative (2009). Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer's disease s disease. Brain, 132(Pt 8), 20482057.CrossRefGoogle ScholarPubMed
Dubois, B., Feldman, H.H., Jacova, C., Dekosky, S.T., Barberger-Gateau, P., Cummings, J., Scheltens, P. (2007). Research criteria for the diagnosis of Alzheimer's disease: Revising the NINCDS-ADRDA criteria. Lancet Neurology, 6(8), 734746.CrossRefGoogle ScholarPubMed
Gelinas, I., Gauthier, L., McIntyre, M., Gauthier, S. (1999). Development of a functional measure for persons with Alzheimer's disease: The disability assessment for dementia. American Journal of Occupational Therapy, 53(5), 471481.CrossRefGoogle ScholarPubMed
Goll, J.C., Kim, L.G., Hailstone, J.C., Lehmann, M., Buckley, A., Crutch, S.J., Warren, J.D. (2011). Auditory object cognition in dementia. Neuropsychologia, 49(9), 27552765.CrossRefGoogle ScholarPubMed
Gorno-Tempini, M.L., Brambati, S.M., Ginex, V., Ogar, J., Dronkers, N.F., Marcone, A., Miller, B.L. (2008). The logopenic/phonological variant of primary progressive aphasia. Neurology, 71(16), 12271234.CrossRefGoogle ScholarPubMed
Gorno-Tempini, M.L., Dronkers, N.F., Rankin, K.P., Ogar, J.M., Phengrasamy, L., Rosen, H.J., Miller, B.L. (2004). Cognition and anatomy in three variants of primary progressive aphasia. Annals of Neurology, 55(3), 335346.CrossRefGoogle ScholarPubMed
Gorno-Tempini, M.L., Hillis, A.E., Weintraub, S., Kertesz, A., Mendez, M., Cappa, S.F., Grossman, M. (2011). Classification of primary progressive aphasia and its variants. Neurology, 76(11), 10061014.CrossRefGoogle ScholarPubMed
Hartley, A.A., Speer, N.K. (2000). Locating and fractionating working memory using functional neuroimaging: Storage, maintenance, and executive functions. Microscopy Research and Technique, 51(1), 4553.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Henson, R.N., Burgess, N., Frith, C.D. (2000). Recoding, storage, rehearsal and grouping in verbal short-term memory: An fMRI study. Neuropsychologia, 38(4), 426440.CrossRefGoogle ScholarPubMed
Hodges, J.R., Martinos, M., Woollams, A.M., Patterson, K., Adlam, A.L. (2008). Repeat and Point: Differentiating semantic dementia from progressive non-fluent aphasia. Cortex, 44(9), 12651270.CrossRefGoogle ScholarPubMed
Hodges, J.R., Salmon, D.P., Butters, N. (1991). The nature of the naming deficit in Alzheimer's and Huntington's disease. Brain, 114(Pt 4), 15471558.CrossRefGoogle ScholarPubMed
Hodges, J.R., Salmon, D.P., Butters, N. (1992). Semantic memory impairment in Alzheimer's disease: Failure of access or degraded knowledge? Neuropsychologia, 30(4), 301314.CrossRefGoogle ScholarPubMed
Huntley, J.D., Howard, R.J. (2010). Working memory in early Alzheimer's disease: A neuropsychological review. International Journal of Geriatric Psychiatry, 25(2), 121132.CrossRefGoogle ScholarPubMed
Kertesz, A., Davidson, W., McCabe, P., Takagi, K., Munoz, D. (2003). Primary progressive aphasia: Diagnosis, varieties, evolution. Journal of the International Neuropsychological Society, 9(5), 710719.CrossRefGoogle ScholarPubMed
Klunk, W.E., Engler, H., Nordberg, A., Wang, Y., Blomqvist, G., Holt, D.P., Langstrom, B. (2004). Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Annals of Neurology, 55(3), 306319.CrossRefGoogle ScholarPubMed
Laures-Gore, J., Marshall, R.S., Verner, E. (2011). Performance of individuals with left-hemisphere stroke and aphasia and individuals with right brain damage on forward and backward digit span tasks. Aphasiology, 25(1), 4356.CrossRefGoogle ScholarPubMed
Leyton, C.E., Piguet, O., Savage, S., Burrell, J., Hodges, J.R. (2012). Naming and repetition in logopenic progressive aphasia. Journal of Alzheimer's Disease, [Epub ahead of print].CrossRefGoogle ScholarPubMed
Leyton, C.E., Villemagne, V.L., Savage, S., Pike, K.E., Ballard, K.J., Piguet, O., Hodges, J.R. (2011). Subtypes of progressive aphasia: Application of the International Consensus Criteria and validation using beta-amyloid imaging. Brain, 134(Pt 10), 30303043.CrossRefGoogle ScholarPubMed
Martin, N., Ayala, J. (2004). Measurements of auditory-verbal STM span in aphasia: Effects of item, task, and lexical impairment. Brain and Language, 89(3), 464483.CrossRefGoogle ScholarPubMed
McKhann, G.M., Knopman, D.S., Chertkow, H., Hyman, B.T., Jack, C.R. Jr., Kawas, C.H., Phelps, C.H. (2011). The diagnosis of dementia due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's and Dementia, 7(3), 263269.CrossRefGoogle ScholarPubMed
Mesulam, M., Wicklund, A., Johnson, N., Rogalski, E., Leger, G.C., Rademaker, A., Bigio, E.H. (2008). Alzheimer and frontotemporal pathology in subsets of primary progressive aphasia. Annals of Neurology, 63(6), 709719.CrossRefGoogle ScholarPubMed
Meyers, J.E., Meyers, K.R. (1995). Rey Complex Figure Test and Recognition Trial. Odessa, FL: Psychological Assessment Resources, Inc.Google Scholar
Migliaccio, R., Agosta, F., Rascovsky, K., Karydas, A., Bonasera, S., Rabinovici, G.D., Gorno-Tempini, M.L. (2009). Clinical syndromes associated with posterior atrophy: Early age at onset AD spectrum. Neurology, 73(19), 15711578.CrossRefGoogle ScholarPubMed
Mioshi, E., Dawson, K., Mitchell, J., Arnold, R., Hodges, J.R. (2006). The Addenbrooke's Cognitive Examination Revised (ACE-R): A brief cognitive test battery for dementia screening. International Journal of Geriatric Psychiatry, 21(11), 10781085.CrossRefGoogle ScholarPubMed
Owen, A.M. (2000). The role of the lateral frontal cortex in mnemonic processing: The contribution of functional neuroimaging. Experimental Brain Research, 133(1), 3343.CrossRefGoogle ScholarPubMed
Owen, A.M., Herrod, N.J., Menon, D.K., Clark, J.C., Downey, S.P., Carpenter, T.A., Pickard, J.D. (1999). Redefining the functional organization of working memory processes within human lateral prefrontal cortex. The European Journal of Neuroscience, 11(2), 567574.CrossRefGoogle ScholarPubMed
Parmentier, F.B., Andres, P., Elford, G., Jones, D.M. (2006). Organization of visuo-spatial serial memory: Interaction of temporal order with spatial and temporal grouping. Psychological Research, 70(3), 200217.CrossRefGoogle ScholarPubMed
Peters, F., Majerus, S., Olivier, L., van der Linden, M., Salmon, E., Collette, F. (2007). A multicomponent exploration of verbal short-term storage deficits in normal aging and Alzheimer's disease. Journal of Clinical and Experimental Neuropsychology, 29(4), 405417.CrossRefGoogle ScholarPubMed
Rabinovici, G.D., Jagust, W.J., Furst, A.J., Ogar, J.M., Racine, C.A., Mormino, E.C., Gorno-Tempini, M.L. (2008). Abeta amyloid and glucose metabolism in three variants of primary progressive aphasia. Annals of Neurology, 64(4), 388401.CrossRefGoogle ScholarPubMed
Ravizza, S.M., Hazeltine, E., Ruiz, S., Zhu, D.C. (2011). Left TPJ activity in verbal working memory: Implications for storage- and sensory-specific models of short term memory. Neuroimage, 55(4), 18361846.CrossRefGoogle ScholarPubMed
Reitan, R.M. (1955). The relation of the trail making test to organic brain damage. Journal of Consulting Psychology, 19(5), 393394.CrossRefGoogle ScholarPubMed
Rohrer, J.D., Ridgway, G.R., Crutch, S.J., Hailstone, J., Goll, J.C., Clarkson, M.J., Warren, J.D. (2010). Progressive logopenic/phonological aphasia: Erosion of the language network. Neuroimage, 49(1), 984993.CrossRefGoogle ScholarPubMed
Rohrer, J.D., Rossor, M.N., Warren, J.D. (2012). Alzheimer's pathology in primary progressive aphasia. Neurobiology of Aging, 33, 744752.CrossRefGoogle ScholarPubMed
Rosenthal, R. (1991). Meta-analytic procedures for social research (revised edition). Newbury Park, CA: Sage.CrossRefGoogle Scholar
Salmon, E., Sadzot, B., Maquet, P., Degueldre, C., Lemaire, C., Rigo, P., Franck, G. (1994). Differential diagnosis of Alzheimer's disease with PET. Journal of Nuclear Medicine, 35(3), 391398.Google ScholarPubMed
Schum, R.L., Sivan, A.B. (1997). Verbal abilities in healthy elderly adults. Applied Neuropsychology, 4(2), 130134.CrossRefGoogle ScholarPubMed
Smith, E.E., Jonides, J. (1997). Working memory: A view from neuroimaging. Cognitive Psychology, 33(1), 542.CrossRefGoogle ScholarPubMed
Smith, E.E., Jonides, J., Koeppe, R.A. (1996). Dissociating verbal and spatial working memory using PET. Cerebral Cortex, 6(1), 1120.CrossRefGoogle ScholarPubMed
Smith, E.E., Jonides, J., Marshuetz, C., Koeppe, R.A. (1998). Components of verbal working memory: Evidence from neuroimaging. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 876882.CrossRefGoogle ScholarPubMed
Toepper, M., Beblo, T., Thomas, C., Driessen, M. (2008). Early detection of Alzheimer's disease: A new working memory paradigm. International Journal of Geriatric Psychiatry, 23(3), 272278.CrossRefGoogle ScholarPubMed
van Asselen, M., Kessels, R.P., Neggers, S.F., Kappelle, L.J., Frijns, C.J., Postma, A. (2006). Brain areas involved in spatial working memory. Neuropsychologia, 44(7), 11851194.CrossRefGoogle ScholarPubMed
Weintraub, S., Wicklund, A.H., Salmon, D.P. (2012). The neuropsychological profile of Alzheimer disease. Cold Spring Harbour Perspectives in Medicine, 2(4), a006171. doi:10.1101/cshperspect.a006171Google ScholarPubMed
Weschler, D. (1997). Weschler Memory Scale – Third edition: Administration and scoring manual. San Antonio: TX: Psychological Corporation.Google Scholar
Wilde, N., Strauss, E. (2002). Functional equivalence of WAIS-III/WMS-III digit and spatial span under forward and backward recall conditions. The Clinical Neuropsychologist, 16(3), 322330.CrossRefGoogle ScholarPubMed