Hostname: page-component-f554764f5-c4bhq Total loading time: 0 Render date: 2025-04-10T08:07:52.311Z Has data issue: false hasContentIssue false

The relationship between biological sex, cognitive reserve, and cognition in multiple sclerosis

Published online by Cambridge University Press:  02 April 2025

Manuela Altieri*
Affiliation:
Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy Department of Psychology, University of Campania Luigi Vanvitelli, Caserta, Italy
Alvino Bisecco
Affiliation:
Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
Alessandro d’Ambrosio
Affiliation:
Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
Valentina Rippa
Affiliation:
Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
Mario Risi
Affiliation:
Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
Riccardo Maria Borgo
Affiliation:
Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
Daniela Buonanno
Affiliation:
Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
Teresa Cuomo
Affiliation:
Department of Neurology, Umberto I Hospital, Nocera Inferiore, Italy
Alessandro Tessitore
Affiliation:
Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
Gabriella Santangelo
Affiliation:
Department of Psychology, University of Campania Luigi Vanvitelli, Caserta, Italy
Antonio Gallo
Affiliation:
Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
*
Corresponding author: Manuela Altieri; Email: [email protected]

Abstract

Objective:

Cognitive impairment is a common feature of multiple sclerosis (MS), and its severity may be influenced by several factors, such as biological sex and levels of cognitive reserve (CR). The relationship between sex, CR, and cognition has not yet been fully investigated. Therefore, the present study aimed to explore sex differences in CR building and the effect of sex and CR on cognitive performance in MS.

Method:

233 participants underwent the Brief Repeatable Battery of Neuropsychological Tests (BRB-N), the Stroop test, and the Cognitive Reserve Scale. The t-test was performed to compare sociodemographic variables, Italian adaptation of the Cognitive Reserve Scale, and cognitive test scores between sexes. To evaluate the effect of CR and sex and their interaction on cognitive performance several models of multivariate analyses of covariance were performed (dependent variables: all subtests of Brief Repeatable Battery of Neuropsychological Tests and Stroop scores; independent variables: sex and CR). Covariates included age, Expanded Disability Status Scale, and BDI-II scores.

Results:

Women showed higher levels of CR, particularly in daily activities (t = −5.848, p<.001), hobbies (t = −2.591, p = .010), and social life (t = −2.362, p = .011). Sex differences were noted in verbal memory and fluency (with women outperforming men) and processing speed (with men performing better than women). Multivariate analyses revealed a nonsignificant interaction between CR and sex on cognition (Λ=.950, F(10,260)=.813, p = .617, ηp2 = .050).

Conclusions:

CR and sex seemed to affect cognitive performance independently in pwMS. This highlights the importance of considering both factors in cognitive assessment, and that both sexes may benefit from specific psychoeducational training aimed at increasing CR levels.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Neuropsychological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Altieri, M., Santangelo, G., Bisecco, A., D’Ambrosio, A., Rippa, V., Capuano, R., Giuliano, F., Matrone, F., Bonavita, S., Tedeschi, G., & Gallo, A. (2021). The influence of biological sex on cognitive performance in people with multiple sclerosis. Journal of the Neurological Sciences, 429, 118175.Google Scholar
Altieri, M., Siciliano, M., Pappacena, S., Roldán-Tapia, M. D., Trojano, L., & Santangelo, G. (2018). Psychometric properties of the Italian version of the Cognitive Reserve Scale (I-CRS). Neurological Sciences, 39(8), 13831390.CrossRefGoogle ScholarPubMed
Amato, M. P., Portaccio, E., Goretti, B., Zipoli, V., Ricchiuti, L., De Caro, M. F., Patti, F., Vecchio, R., Sorbi, S., & Trojano, M. (2006). The Rao’s brief repeatable battery and Stroop test: Normative values with age, education and gender corrections in an Italian population. Multiple Sclerosis Journal, 12(6), 787793.CrossRefGoogle Scholar
Artemiadis, A., Bakirtzis, C., Ifantopoulou, P., Zis, P., Bargiotas, P., Grigoriadis, N., & Hadjigeorgiou, G. (2020). The role of cognitive reserve in multiple sclerosis: A cross-sectional study in 526 patients. Multiple Sclerosis and Related Disorders, 41, 102047.Google ScholarPubMed
Asperholm, M., Högman, N., Rafi, J., & Herlitz, A. (2019). What did you do yesterday? A meta-analysis of sex differences in episodic memory. Psychological Bulletin, 145(8), 785821.Google Scholar
Beatty, W. W., & Aupperle, R. L. (2002). Sex differences in cognitive impairment in Multiple Sclerosis. The Clinical Neuropsychologist, 16(4), 472480, APA PsycInfo®.Google ScholarPubMed
Benedict, R. H., DeLuca, J., Phillips, G., LaRocca, N., Hudson, L. D., Rudick, R., & Multiple Sclerosis Outcome Assessments Consortium (2017). Validity of the Symbol Digit Modalities Test as a cognition performance outcome measure for multiple sclerosis. Multiple sclerosis (Houndmills, Basingstoke, England), 23(5), 721733. https://doi.org/10.1177/1352458517690821 CrossRefGoogle ScholarPubMed
Bisecco, A., Capuano, R., Caiazzo, G., d’Ambrosio, A., Docimo, R., Cirillo, M., Russo, A., Altieri, M., Bonavita, S., Rocca, M. A., Filippi, M., Tedeschi, G., & Gallo, A. (2021). Regional changes in thalamic shape and volume are related to cognitive performance in multiple sclerosis. Multiple Sclerosis Journal, 27(1), 134138.(Houndmills, Basingstoke, England)Google ScholarPubMed
Bizzo, B. C., Arruda-Sanchez, T., Tobyne, S. M., Bireley, J. D., Lev, M. H., Gasparetto, E. L., & Klawiter, E. C. (2021). Anterior insular resting-state functional connectivity is related to cognitive reserve in Multiple Sclerosis. Journal of Neuroimaging: Official Journal of the American Society of Neuroimaging, 31(1), 98102.CrossRefGoogle ScholarPubMed
Bradson, M. L., Cadden, M. H., Riegler, K. E., Thomas, G. A., Randolph, J. J., & Arnett, P. A. (2023). Cognitive reserve moderates the effects of fatigue and depressive symptoms in Multiple Sclerosis. Archives of Clinical Neuropsychology: The Official Journal of the National Academy of Neuropsychologists, 38(8), 15971609.Google ScholarPubMed
Cadden, M. H., Guty, E. T., & Arnett, P. A. (2019). Cognitive reserve attenuates the effect of disability on depression in Multiple Sclerosis. Archives of Clinical Neuropsychology: The Official Journal of the National Academy of Neuropsychologists, 34(4), 495502.Google ScholarPubMed
Capitani, E., Barbarotto, R., & Laiacona, M. (2005). Gender differences and the brain representation of semantic knowledge. Brain and Language, 95(1), 5657.CrossRefGoogle Scholar
Capitani, E., Laiacona, M., & Barbarotto, R. (1999). Gender affects word retrieval of certain categories in semantic fluency tasks. Cortex, 35(2), 273278.a Journal Devoted to the Study of the Nervous System and BehaviorCrossRefGoogle ScholarPubMed
Cerri, S., Mus, L., & Blandini, F. (2019). Parkinson’s Disease in women and men: What’s the difference? Journal of Parkinson’s Disease, 9(3), 501515.CrossRefGoogle ScholarPubMed
Chiaravalloti, N. D., & DeLuca, J. (2008). Cognitive impairment in Multiple Sclerosis. The Lancet Neurology, 7(12), 11391151.Google ScholarPubMed
Chitnis, T., Vandercappellen, J., King, M., & Brichetto, G. (2022). Symptom interconnectivity in Multiple Sclerosis: A narrative review of potential underlying biological disease processes. Neurology and Therapy, 11(3), 10431070.Google ScholarPubMed
Donaldson, E., Patel, V. P., Shammi, P., & Feinstein, A. (2019). Why sex matters: A cognitive study of people with multiple sclerosis. Cognitive and Behavioral Neurology, 32(1), 3945, APA PsycInfo®.https://doi.org/10.1097/WNN.0000000000000188,Google ScholarPubMed
Eijlers, A. J. C., van Geest, Q., Dekker, I., Steenwijk, M. D., Meijer, K. A., Hulst, H. E., Barkhof, F., Uitdehaag, B. M. J., Schoonheim, M. M., & Geurts, J. J. G. (2018). Predicting cognitive decline in Multiple Sclerosis: A 5-year follow-up study. Brain: A Journal of Neurology, 141(9), 26052618.Google ScholarPubMed
Estrada-López, M., García-Martín, S., & Cantón-Mayo, I. (2021). Cognitive dysfunction in Multiple Sclerosis: Educational level as a protective factor. Neurology International, 13(3), 335342.CrossRefGoogle ScholarPubMed
Feinstein, A., Magalhaes, S., Richard, J.-F., Audet, B., & Moore, C. (2014). The link between Multiple Sclerosis and depression. Nature Reviews Neurology, 10(9), 507517.CrossRefGoogle ScholarPubMed
Filippetti, V. A., & Allegri, R. F. (2011). [image omitted] Verbal fluency in Spanish-speaking children: Analysis model according to task type, clustering, and switching strategies and performance over time. The Clinical Neuropsychologist, 25(3), 413436.CrossRefGoogle ScholarPubMed
Fuchs, T. A., Benedict, R. H. B., Bartnik, A., Choudhery, S., Li, X., Mallory, M., Oship, D., Yasin, F., Ashton, K., Jakimovski, D., Bergsland, N., Ramasamy, D. P., Weinstock-Guttman, B., Zivadinov, R., & Dwyer, M. G. (2019). Preserved network functional connectivity underlies cognitive reserve in multiple sclerosis. Human Brain Mapping, 40(18), 52315241.Google ScholarPubMed
Giacomucci, G., Mazzeo, S., Padiglioni, S., Bagnoli, S., Ferrari, C., Bracco, L., Nacmias, B., Sorbi, S., & Bessi, V. (2021). Gender differences in cognitive reserve: Implication for subjective cognitive decline in women. Journal of the Neurological Sciences, 429, 117827.Google Scholar
Gibson, C., & Galea, L. A. M. (2023). Sex differences in brain function and dysfunction. Springer Cham, Switzerland. https://doi.org/10.1007/978-3-031-26723-9.CrossRefGoogle Scholar
Gill, S., Santo, J., Blair, M., & Morrow, S. A. (2019). Depressive symptoms are associated with more negative functional outcomes than anxiety symptoms in persons with Multiple Sclerosis. The Journal of Neuropsychiatry and Clinical Neurosciences, 31(1), 3742, APA PsycInfo®.Google ScholarPubMed
Grzegorski, T., & Losy, J. (2017). Cognitive impairment in multiple sclerosis—A review of current knowledge and recent research. Reviews in the Neurosciences, 28(8), 845860.CrossRefGoogle ScholarPubMed
Guillemin, C., Lommers, E., Delrue, G., Gester, E., Maquet, P., & Collette, F. (2022). The complex interplay between trait fatigue and cognition in Multiple Sclerosis. Psychologica Belgica, 62(1), 108122.Google ScholarPubMed
Hirnstein, M., Stuebs, J., Moè, A., & Hausmann, M. (2023). Sex/Gender differences in verbal fluency and verbal-episodic memory: A meta-analysis. Perspectives on Psychological Science, 18(1), 6790.CrossRefGoogle ScholarPubMed
Hulst, H. E., Schoonheim, M. M., Van Geest, Q., Uitdehaag, B. M. J., Barkhof, F., & Geurts, J. J. G. (2015). Memory impairment in multiple sclerosis: Relevance of hippocampal activation and hippocampal connectivity. Multiple Sclerosis Journal, 21(13), 17051712.(Houndmills, Basingstoke, England)Google ScholarPubMed
Ifantopoulou, P., Artemiadis, A. K., Bakirtzis, C., Zekiou, K., Papadopoulos, T.-S., Diakogiannis, I., Hadjigeorgiou, G., Grigoriadis, N., & Orologas, A. (2019). Cognitive and brain reserve in multiple sclerosis—A cross-sectional study. Multiple Sclerosis and Related Disorders, 35, 128134.Google ScholarPubMed
Kurtzke, J. F. (1983). Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology, 33(11), 14441452.Google ScholarPubMed
Leavitt, V. M., Dworkin, J. D., Kalina, T., & Ratzan, A. S. (2024). Sex differences in brain resilience of individuals with multiple sclerosis. Multiple Sclerosis and Related Disorders, 87, 105646.CrossRefGoogle ScholarPubMed
Leon-Estrada, I., Garcia-Garcia, J., & Roldan-Tapia, L. (2017). [Cognitive reserve scale: Testing the theoretical model and norms]. Revista De Neurologia, 64(1), 716.Google ScholarPubMed
Letenneur, L., Launer, L. J., Andersen, K., Dewey, M. E., Ott, A., Copeland, J. R., Dartigues, J. F., Kragh-Sorensen, P., Baldereschi, M., Brayne, C., Lobo, A., Martinez-Lage, J. M., Stijnen, T., & Hofman, A. (2000). Education and Risk for Alzheimer’s Disease: Sex Makes a Difference EURODEM Pooled Analyses. EURODEM Incidence Research Group. American Journal of Epidemiology, 151(11), 10641071.Google ScholarPubMed
Li, R., & Singh, M. (2014). Sex differences in cognitive impairment and Alzheimer’s disease. Frontiers in Neuroendocrinology, 35(3), 385403.CrossRefGoogle ScholarPubMed
Lopez-Soley, E., Solana, E., Martínez-Heras, E., Andorra, M., Radua, J., Prats-Uribe, A., Montejo, C., Sola-Valls, N., Sepulveda, M., Pulido-Valdeolivas, I., Blanco, Y., Martinez-Lapiscina, E. H., Saiz, A., & Llufriu, S. (2020). Impact of cognitive reserve and structural connectivity on cognitive performance in Multiple Sclerosis. Frontiers in Neurology, 11, 581700, https://doi.org/10.3389/fneur.2020.581700 CrossRefGoogle ScholarPubMed
Luerding, R., Gebel, S., Gebel, E.-M., Schwab-Malek, S., & Weissert, R. (2016). Influence of formal education on cognitive reserve in patients with Multiple Sclerosis. Frontiers in Neurology, 7, 46.Google ScholarPubMed
Machado, R., Lima, C., d’Almeida, O. C., Afonso, A., Macário, C., Castelo-Branco, M., Sousa, L., Santana, I., & Batista, S. (2021). Protective effects of cognitive and brain reserve in multiple sclerosis: Differential roles on social cognition and 2018;classic cognition2019. Multiple Sclerosis and Related Disorders, 48, 102716.CrossRefGoogle Scholar
Maggi, G., Altieri, M., Risi, M., Rippa, V., Borgo, R. M., Lavorgna, L., Bonavita, S., Buonanno, D., D’Ambrosio, A., Bisecco, A., Santangelo, G., Tessitore, A., & Gallo, A. (2024). Cognitive reserve predicts long-term cognitive trajectories in relapsing-remitting multiple sclerosis. Multiple Sclerosis Journal, 31(1), 107116.(Houndmills, Basingstoke, England), 13524585241302167CrossRefGoogle ScholarPubMed
Maggi, G., Altieri, M., Risi, M., Rippa, V., Borgo, R. M., Sacco, R., Buonanno, D., D’Ambrosio, A., Bisecco, A., Santangelo, G., & Gallo, A. (2024). Vocabulary knowledge as a reliable proxy of cognitive reserve in multiple sclerosis: A validation study. Neurological Sciences: Official Journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 45(8), 39313938.Google ScholarPubMed
Mahmoudi, F., McCarthy, M., & Nelson, F. (2025). Functional MRI and cognition in multiple sclerosis—Where are we now? Journal of Neuroimaging, 35(1), e13252.CrossRefGoogle ScholarPubMed
Marrie, R. A., Patel, R., Bernstein, C. N., Bolton, J. M., Graff, L. A., Marriott, J. J., Hitchon, C. A., Figley, C. R., Kornelsen, J., & Fisk, J. D. (2021). Anxiety and depression affect performance on the symbol digit modalities test over time in MS and other immune disorders. Multiple Sclerosis Journal, 27(8), 12841292.(Houndmills, Basingstoke, England)Google ScholarPubMed
Marrie, R. A., Patel, R., Figley, C. R., Kornelsen, J., Bolton, J. M., Graff, L., Mazerolle, E. L., Marriott, J. J., Bernstein, C. N., & Fisk, J. D. (2019). Diabetes and anxiety adversely affect cognition in Multiple Sclerosis. Multiple Sclerosis and Related Disorders, 27, 164170.Google ScholarPubMed
Motyl, J., Friedova, L., Ganapathy Subramanian, R., Vaneckova, M., Fuchs, T. A., Krasensky, J., Blahova Dusankova, J., Kubala Havrdova, E., Horakova, D., & Uher, T. (2024). Brain MRI disease burden and sex differences in cognitive performance of patients with Multiple Sclerosis. Acta Neurologica Belgica, 124(1), 109118.Google ScholarPubMed
Munro, C. A., Winicki, J. M., Schretlen, D. J., Gower, E. W., Turano, K. A., Muñoz, B., Keay, L., Bandeen-Roche, K., & West, S. K. (2012). Sex differences in cognition in healthy elderly individuals. Aging, Neuropsychology, and Cognition, 19(6), 759768.CrossRefGoogle ScholarPubMed
Nabizadeh, F., Pirahesh, K., Azami, M., Moradkhani, A., Sardaripour, A., & Ramezannezhad, E. (2024). T1 and T2 weighted lesions and cognition in Multiple Sclerosis: A systematic review and meta-analysis. Journal of Clinical Neuroscience: Official Journal of the Neurosurgical Society of Australasia, 119, 17.Google ScholarPubMed
Rao, S. M., Leo, G. J., Bernardin, L., & Unverzagt, F. (1991). Cognitive dysfunction in Multiple Sclerosis. Neurology, 41(5), 685691.CrossRefGoogle ScholarPubMed
Ribbons, K., Lea, R., Schofield, P. W., & Lechner-Scott, J. (2017). Anxiety levels are independently associated with cognitive performance in an Australian Multiple Sclerosis patient cohort. The Journal of Neuropsychiatry and Clinical Neurosciences, 29(2), 128134, APA PsycInfo®.Google Scholar
Sandroff, B. M., Pilutti, L. A., & Motl, R. W. (2019). Cardiorespiratory fitness and cognitive processing speed in Multiple Sclerosis: The possible roles of psychological symptoms. Multiple Sclerosis and Related Disorders, 27, 2329.Google ScholarPubMed
Santangelo, G., Altieri, M., Enzinger, C., Gallo, A., & Trojano, L. (2019). Cognitive reserve and neuropsychological performance in Multiple Sclerosis: A meta-analysis. Neuropsychology, 33(3), 379390.CrossRefGoogle ScholarPubMed
Santangelo, G., Altieri, M., Gallo, A., & Trojano, L. (2019). Does cognitive reserve play any role in Multiple Sclerosis? A meta-analytic study. Multiple Sclerosis and Related Disorders, 30, 265276.Google ScholarPubMed
Savettieri, G., Messina, D., Andreoli, V., Bonavita, S., Caltagirone, C., Cittadella, R., Farina, D., Fazio, M. C., Girlanda, P., Le Pira, F., Liguori, M., Lugaresi, A., Nocentini, U., Reggio, A., Salemi, G., Tedeschi, G., Trojano, M., Valentino, P., & Quattrone, A. (2004). Gender-related effect of clinical and genetic variables on the cognitive impairment in Multiple Sclerosis. Journal of Neurology, 251(10), 12081214.Google ScholarPubMed
Scarpazza, C., Braghittoni, D., Casale, B., Malagú, S., Mattioli, F., di Pellegrino, G., & Ladavas, E. (2013). Education protects against cognitive changes associated with Multiple Sclerosis. Restorative Neurology and Neuroscience, 31(5), 619631.CrossRefGoogle ScholarPubMed
Schoonheim, M. M., Popescu, V., Rueda Lopes, F. C., Wiebenga, O. T., Vrenken, H., Douw, L., Polman, C. H., Geurts, J. J. G., & Barkhof, F. (2012). Subcortical atrophy and cognition: Sex effects in Multiple Sclerosis. Neurology, 79(17), 17541761.CrossRefGoogle ScholarPubMed
Schoonheim, M. M., Vigeveno, R. M., Rueda Lopes, F. C., Pouwels, P. J. W., Polman, C. H., Barkhof, F., & Geurts, J. J. G. (2014). Sex-specific extent and severity of white matter damage in Multiple Sclerosis: Implications for cognitive decline. Human Brain Mapping, 35(5), 23482358.CrossRefGoogle ScholarPubMed
Simani, L., Molaeipour, L., Kian, S., & Leavitt, V. M. (2024). Correlation between cognitive changes and neuroradiological changes over time in Multiple Sclerosis: A systematic review and meta-analysis. Journal of Neurology, 271(8), 54985518.Google ScholarPubMed
Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society: JINS, 8(3), 448460.Google ScholarPubMed
Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47(10), 20152028.Google ScholarPubMed
Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer’s disease. The Lancet Neurology, 11(11), 10061012.Google ScholarPubMed
Subramaniapillai, S., Almey, A., Natasha Rajah, M., & Einstein, G. (2021). Sex and gender differences in cognitive and brain reserve: Implications for Alzheimer’s disease in women. Frontiers in Neuroendocrinology, 60, 100879.CrossRefGoogle ScholarPubMed
Sumowski, J. F., Benedict, R., Enzinger, C., Filippi, M., Geurts, J. J., Hamalainen, P., Hulst, H., Inglese, M., Leavitt, V. M., Rocca, M. A., Rosti-Otajarvi, E. M., & Rao, S. (2018). Cognition in Multiple Sclerosis: State of the field and priorities for the future. Neurology, 90(6), 278288.Google ScholarPubMed
Sumowski, J. F., Rocca, M. A., Leavitt, V. M., Riccitelli, G., Comi, G., DeLuca, J., & Filippi, M. (2013). Brain reserve and cognitive reserve in Multiple Sclerosis: What you’ve got and how you use it. Neurology, 80(24), 21862193.Google ScholarPubMed
Sumowski, J. F., Rocca, M. A., Leavitt, V. M., Riccitelli, G., Meani, A., Comi, G., & Filippi, M. (2016). Reading, writing, and reserve: Literacy activities are linked to hippocampal volume and memory in Multiple Sclerosis. Multiple Sclerosis Journal, 22(12), 16211625.CrossRefGoogle ScholarPubMed
Sumowski, J. F., Wylie, G. R., Gonnella, A., Chiaravalloti, N., & Deluca, J. (2010). Premorbid cognitive leisure independently contributes to cognitive reserve in Multiple Sclerosis. Neurology, 75(16), 14281431.Google ScholarPubMed
Sundermann, E. E., Biegon, A., Rubin, L. H., Lipton, R. B., Landau, S., & Maki, P. M. (2017). Does the female advantage in verbal memory contribute to underestimating Alzheimer’s Disease pathology in women versus men? Journal of Alzheimer’s disease : JAD, 56(3), 947957.Google ScholarPubMed
Tedone, , Vizzino, C., Meani, A., Gallo, A., Altieri, M., D’Ambrosio, A., Pantano, P., Piervincenzi, C., Tommasin, S., De Stefano, N., Cortese, R., Stromillo, M. L., Rocca, M. A., Sala, S., Valsasina, P., Pagani, E., Preziosa, P., Giannì, C., Petsas, N.Filippi, M. (2024). The brief repeatable battery of neuropsychological tests (BRB-N) version a: Update of Italian normative data from the Italian Neuroimaging Network Initiative (INNI). Journal of Neurology, 271(4), 18131823.Google ScholarPubMed
Thompson, A. J., Banwell, B. L., Barkhof, F., Carroll, W. M., Coetzee, T., Comi, G., Correale, J., Fazekas, F., Filippi, M., Freedman, M. S., Fujihara, K., Galetta, S. L., Hartung, H. P., Kappos, L., Lublin, F. D., Marrie, R. A., Miller, A. E., Miller, D. H., Montalban, X.Cohen, J. A. (2018). Diagnosis of Multiple sclerosis: 2017 revisions of the McDonald criteria. The Lancet Neurology, 17(2), 162173.Google ScholarPubMed
Tóth, E., Faragó, P., Király, A., Szabó, N., Veréb, D., Kocsis, K., Kincses, B., Sandi, D., Bencsik, K., Vécsei, L., & Kincses, Z. T. (2019). The contribution of various MRI parameters to clinical and cognitive disability in Multiple Sclerosis. Frontiers in Neurology, 9, 111.Google ScholarPubMed
Wallis, O., Bol, Y., Köhler, S., & van Heugten, C. (2020). Anxiety in Multiple Sclerosis is related to depressive symptoms and cognitive complaints. Acta Neurologica Scandinavica, 141(3), 212218.Google ScholarPubMed
Wiens, A. N., Fuller, K. H., & Crossen, J. R. (1997). Paced auditory serial addition test: Adult norms and moderator variables. Journal of Clinical and Experimental Neuropsychology, 19(4), 473483.Google ScholarPubMed
Wingenfeld, S. A., Holdwick, D. J., Davis, J. L., & Hunter, B. B. (1999). Normative data on computerized paced auditory serial addition task performance. The Clinical Neuropsychologist, 13(3), 268273.Google ScholarPubMed