Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T03:59:15.893Z Has data issue: false hasContentIssue false

Neurocognitive Late Effects of Pediatric Brain Tumors of the Posterior Fossa: A Quantitative Review

Published online by Cambridge University Press:  25 October 2012

Kristen E. Robinson*
Affiliation:
Department of Psychology and Human Development, Vanderbilt University, Nashville, Tennessee
Claire E. Fraley
Affiliation:
Department of Psychology and Human Development, Vanderbilt University, Nashville, Tennessee
Matthew M. Pearson
Affiliation:
Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
John F. Kuttesch Jr.,
Affiliation:
Division of Pediatric Hematology/Oncology and Stem Cell Transplantation, Penn State Hershey Children's Hospital, Hershey, Pennsylvania
Bruce E. Compas
Affiliation:
Department of Psychology and Human Development, Vanderbilt University, Nashville, Tennessee
*
Correspondence and reprint requests to: Kristen E. Robinson, Department of Psychology & Human Development, Vanderbilt University, 230 Appleton Place, Nashville, TN 37203. E-mail: [email protected]

Abstract

Deficits in neurocognitive functioning are an important area of late effects in survivors of pediatric brain tumors; however, a quantitative analysis of the magnitude of these deficits in survivors of brain tumors of the posterior fossa has not been conducted. Despite tumor locations in the posterior regions of the brain, individual studies have documented deficits in a variety of domains, reflective of impairment in other brain regions. The current study provides a comprehensive meta-analysis of literature on neurocognitive late effects found in survivors of posterior fossa tumors. Results indicated significant deficits in both specific and broad indices of neurocognitive functioning, and the overall magnitude of effects across domains ranged from medium to large (g = −0.62 to −1.69) with a large mean overall effect size (g = −1.03). Moderator analyses indicated significantly greater effects for survivors diagnosed at a younger age and those who received radiation therapy. These findings underscore the importance of monitoring neurocognitive late effects in survivors of pediatric brain tumors of the posterior fossa, as well as the need for more consistent consideration of demographic, diagnostic, and treatment-related variables to allow for examination of factors that moderate these deficits. (JINS, 2012, 19, 1–10)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarsen, F.K., Van Dongen, H.R., Paquier, P.F., Van Mourik, M., Catsman-Berrevoets, C.E. (2004). Long-term sequelae in children after cerebellar astrocytoma surgery. Neurology, 62, 13111316. doi:10.1212/01.WNL.0000120549.77188.38CrossRefGoogle ScholarPubMed
Alexander, E., Loeffler, J.S. (1999). The case for radiosurgery. Clinical Neurosurgery, 45, 3240.Google ScholarPubMed
Ater, J.L., Moore, B.D., Francis, D.J., Castillo, R., Slopis, J., Copeland, D.R. (1996). Correlation of medical and neurosurgical events with neuropsychological status in children at diagnosis of astrocytoma: Utilization of a neurological severity score. Journal of Child Neurology, 11, 462469.CrossRefGoogle ScholarPubMed
Beebe, D.W., Ris, M.D., Armstrong, F.D., Fontanesi, J., Mulhern, R.K., Holmes, E., Wisoff, J.H. (2005). Cognitive and adaptive outcome in low-grade pediatric cerebellar astrocytomas: Evidence of diminished cognitive and adaptive functioning in national collaborative research studies (CCG 9891/POG 9130). Journal of Clinical Oncology, 23, 51985204. doi:10.1200/JCO.2005.06.117CrossRefGoogle ScholarPubMed
Benesch, M., Spiegl, K., Winter, A., Passini, A., Lackner, H., Moser, A., Urban, C. (2009). A scoring system to quantify late effects in children after treatment for medulloblastoma/ependymoma and its correlation with quality of life and neurocognitive functioning. Child's Nervous System, 25, 173181. doi:10.1007/s00381-008-0742-1CrossRefGoogle ScholarPubMed
Bonner, M.J., Hardy, K.K., Willard, V.W., Anthony, K.K., Hood, M., Gururangan, S. (2008). Social functioning and facial expression recognition in survivors of pediatric brain tumors. Journal of Pediatric Psychology, 33, 11421152. doi:10.1093/jpepsy/jsn035CrossRefGoogle ScholarPubMed
Borenstein, M., Rothstein, H. (2005). Comprehensive meta-analysis computer program and manual. Englewood Cliffs, NJ: Biostat, Inc.Google Scholar
Callu, D., Viguier, D., Laroussinie, F., Puget, S., Boddaert, N., Kieffer, V., Dellatolas, G. (2009). Cognitive and academic outcome alter benign or malignant cerebellar tumor in children. Cognitive and Behavioral Neurology, 22, 270278. doi:10.1097/WNN.0b013e3181bf2d4cCrossRefGoogle ScholarPubMed
Central Brain Tumor Registry of the United States (2008). Statistical report: Primary brain tumors in the United States, 2000–2004. Hinsdale, IL: the Central Brain Tumor Registry of the United States.Google Scholar
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Copeland, D.R., deMoor, C., Moore, B.D., Ater, J.L. (1999). Neurocognitive development of children after a cerebellar tumor in infancy: A longitudinal study. Journal of Clinical Oncology, 17, 34763486. doi:0732-183X/99/1711-3476CrossRefGoogle ScholarPubMed
Dennis, M., Spiegler, B.J., Hetherington, C.R., Greenberg, M.L. (1996). Neuropsychological sequelae of the treatment of children with medulloblastoma. Journal of Neurooncology, 29, 91101. doi:10.1007/BF00165522CrossRefGoogle ScholarPubMed
Docking, K.M., Ward, E.C., Murdoch, B.E. (2005). Language outcomes subsequent to treatment of brainstem tumour in childhood. Neurorehabilitation, 20, 107124. doi:1053-8135/05CrossRefGoogle ScholarPubMed
Duffner, P.K., Cohen, M.E., Thomas, P. (1983). Late effects of treatment on the intelligence of children with posterior fossa tumors. Cancer, 51, 233237. doi:0008-543X/83/0115/02333.0.CO;2-8>CrossRefGoogle ScholarPubMed
El-Ghandour, N.M. (2011). Endoscopic third ventriculostomy versus ventriculoperitoneal shunt in the treatment of obstructive hydrocephalus due to posterior fossa tumors in children. Child's Nervous System, 27, 117126.CrossRefGoogle ScholarPubMed
Fuemmeler, B.F., Elkin, T.D., Mullins, L.L. (2002). Survivors of childhood brain tumors: Behavioral, emotional, and social adjustment. Clinical Psychology Review, 22, 547585.CrossRefGoogle ScholarPubMed
George, A.P., Kuehn, S.M., Vassilyadi, M., Richards, P.M.P., Parlow, S.E., Keene, D.L., Ventureyra, E.C.G. (2003). Cognitive sequelae in children with posterior fossa tumors. Pediatric Neurology, 28, 4247. doi:10.1016/S0887-8994(02)00471-XCrossRefGoogle ScholarPubMed
Goldwein, J.W., Radcliffe, J., Johnson, J., Moshang, T., Packer, R.J., Sutton, L.N., D'Angio, G.J. (1996). Updated results of a pilot study of low dose craniospinal irradiation plus chemotherapy for children under five with cerebellar primitive neuroectodermal tumors (medulloblastoma). International Journal of Radiation Oncology, Biology, Physics, 14, 899904.CrossRefGoogle Scholar
Grill, J., Renaux, V.K., Bulteau, C., Viguier, D., Levy-Piebois, C., Sainte-Rose, C., Kalifa, C. (1999). Long-term intellectual outcome in children with posterior fossa tumors according to radiation doses and volumes. International Journal of Radiation Oncology Biology and Physics, 45, 137145. doi:S0360-3016/99/00177-7CrossRefGoogle ScholarPubMed
Gurney, J.G., Kadan-Lottick, N.S., Packer, R.J., Neglia, J.P., Sklar, C.A., Punyko, J.A., Robison, L.L. (2003). Endocrine and cardiovascular late effects among adult survivors of childhood brain tumors. Cancer, 97, 663673. doi:10.1002/cncr.11095CrossRefGoogle ScholarPubMed
Hardy, K.K., Bonner, M.J., Willard, V.W., Watral, M.A., Gururangan, S. (2008). Hydrocephalus as a possible additional contributor to cognitive outcome in survivors of pediatric medulloblastoma. Psychooncology, 17, 11571161. doi:10.1002/pon.1349CrossRefGoogle ScholarPubMed
Hetherington, R., Dennis, M., Spiegler, B. (2000). Perception and estimation of time in long-term survivors of childhood posterior fossa tumors. Journal of the International Neuropsychological Society, 6, 682692.CrossRefGoogle ScholarPubMed
Holmquist, L.A., Scott, J. (2002). Treatment, age, and time-related predictors of behavioral outcome in pediatric brain tumor survivors. Journal of Clinical Psychology in Medical Settings, 9, 315321. doi:10.1023/A:1020791018897CrossRefGoogle Scholar
Howlader, N., Noone, A.M., Krapcho, M., Neyman, N., Aminou, R., Waldron, W., Edwards, B.K. (Eds.). (2011). SEER cancer statistics review, 1975–2008. Bethesda, MD: National Cancer Institute.Google Scholar
Jain, N., Krull, K.R., Brouwers, P., Chintagumpala, M.M., Woo, S.Y. (2008). Neuropsychological outcome following intensity-modulated radiation therapy for pediatric medulloblastoma. Pediatric Blood and Cancer, 51, 275279. doi:10.1002/pbc.21590CrossRefGoogle ScholarPubMed
Kao, G.D., Goldwein, J.W., Schultz, D.J., Radcliffe, J., Sutton, L., Lange, B. (1994). The impact of perioperative factors on subsequent intelligence quotient deficits in children treated for medulloblastoma/posterior fossa primitive neuroectodermal tumors. Cancer, 74, 965971.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Karatekin, C., Lazareff, J.A., Asarnow, R.F. (2000). Relevance of the cerebellar hemispheres for executive functions. Pediatric Neurology, 22, 106112. doi:10.1016/S0887-8994(99)00128-9CrossRefGoogle ScholarPubMed
Kieffer-Renauz, V., Bulteau, C., Grill, J., Kalifa, C., Viguier, D., Jambaque, I. (2000). Patterns of neuropsychological deficits in children with medulloblastoma according to craniospinal irradiation doses. Developmental Medicine and Child Neurology, 42, 741745. doi:10.1111/j.1469-8749.2000.tb00036.xCrossRefGoogle Scholar
King, T.Z., Fennell, E.B., Williams, L., Algina, J., Boggs, S., Crosson, B., Leonard, C. (2004). Verbal memory abilities in children with brain tumors. Child Neuropsychology, 10, 7688. doi:10.1080/09297040490911096CrossRefGoogle ScholarPubMed
Levisohn, L., Cronin-Golomb, A., Schmahmann, J.D. (2000). Neuropsychological consequences of cerebellar tumour resection in children: Cerebellar cognitive affective syndrome in a paediatric population. Brain, 123, 10411050. doi:10.1093/brain/123.5.1041CrossRefGoogle Scholar
Lipsey, M.W., Wilson, D.B. (2000). Practical meta-analysis. Thousand Oaks: SAGE Publications.Google Scholar
Mabbott, D.J., Penkman, L., Witol, A., Strother, D., Bouffet, E. (2008). Core neurocognitive functions in children treated for posterior fossa tumors. Neuropsychology, 22, 159168. doi:10.1037/0894-4105.22.2.159CrossRefGoogle ScholarPubMed
Maddrey, A.M., Bergeron, J.A., Lombardo, E.R., McDonald, N.K., Mulne, A.F., Barenberg, P.D., Bowers, D.C. (2005). Neuropsychological performance and quality of life of 10 year survivors of childhood medulloblastoma. Journal of Neurooncology, 72, 245253. doi:10.1007/s11060-004-3009-zCrossRefGoogle ScholarPubMed
Merchant, T.E., Pollack, I.F., Loeffler, J.S. (2010). Brain tumors across the age spectrum: Biology, therapy and late effects. Seminars in Radiation Oncology, 20, 5866. doi:10.1016/j.semradonc.2009.09.005CrossRefGoogle ScholarPubMed
Moore, B.D., Ater, J.L., Copeland, D.R. (1992). Improved neuropsychological outcome in children with brain tumors diagnosed during infancy and treated without cranial irradiation. Journal of Child Neurology, 7, 281290. doi:10.1177/088307389200700308CrossRefGoogle ScholarPubMed
Mulhern, R.K., Butler, R.W. (2004). Neurocognitive sequelae of childhood cancers and their treatment. Pediatric Rehabilitation, 7, 114. doi:10.1080/13638490310001655528CrossRefGoogle ScholarPubMed
Mulhern, R.K., Hancock, J., Fairclough, D., Kun, L. (1992). Neuropsychological status of children treated for brain tumors: A critical review and integrative analysis. Medical and Pediatric Oncology, 20, 181191. doi:10.1002/mpo.2950200302CrossRefGoogle ScholarPubMed
Mulhern, R.K., Kepner, J.L., Thomas, P.R., Armstrong, F.D., Friedman, H.S., Kun, L.E. (1998). Neuropsychologic functioning of survivors of childhood medulloblastoma randomized to receive conventional or reduced-dose craniospinal irradiation: A Pediatric Oncology Group study. Journal of Clinical Oncology, 16, 17231728. doi:0732-183X/98/1605-0041CrossRefGoogle ScholarPubMed
Mulhern, R.K., Kun, L.E. (1985). Neuropsychologic function in children with brain tumors III: Interval changes in the six months following treatment. Medical and Pediatric Oncology, 13, 318324. doi:10.1002/mpo.2950130604CrossRefGoogle ScholarPubMed
Mulhern, R.K., Palmer, S.L., Reddick, W.E., Glass, J.O., Kun, L.E., Taylor, J., Gajjar, A. (2001). Risk of young age for selected neurocognitive deficits in medulloblastoma are associated with white matter loss. Journal of Clinical Oncology, 19, 472479. doi:0732-183X/01/1902-472CrossRefGoogle ScholarPubMed
Mulhern, R.K., Reddick, W.E., Palmer, S.L., Glass, J.O., Elkin, T.D., Kun, L.E., Gajjar, A. (1999). Neurocognitive deficits in medulloblastoma survivors and white matter loss. Annals of Neurology, 46, 834841. doi:10.1002/1531-8249(199912)46:6<834::AID-ANA5>3.0.CO;2-M3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Nagel, B.J., Delis, D.C., Palmer, S.L., Reeves, C., Gajjar, A., Mulhern, R.K. (2006). Early patterns of verbal memory impairment in children treated for medulloblastoma. Neuropsychology, 20, 105122. doi:10.1037/0894-41.0.20.1.105CrossRefGoogle ScholarPubMed
Nathan, P.C., Patel, S.K., Dilley, K., Goldsby, R., Harvey, J., Jacobsen, C., Armstrong, D. (2007). Guidelines for identification of, advocacy for, and interventions in neurocognitive problems in survivors of childhood cancer: A report from the Children's Oncology Group. Archives of Pediatric and Adolescent Medicine, 161, 798806.CrossRefGoogle ScholarPubMed
Ness, K.K., Gurney, J.G. (2007). Adverse late effects of childhood cancer and its treatment on health and performance. Annual Review of Public Health, 28, 279302. doi:10.1146/annurev.publhealth.28.021406.144049CrossRefGoogle ScholarPubMed
Palmer, S.L., Goloubeva, O., Reddick, W.E., Glass, J.O., Gajjar, A., Kun, L., Mulhern, R.K. (2001). Patterns of intellectual development among survivors of pediatric medulloblastoma: A longitudinal analysis. Journal of Clinical Oncology, 19, 23022308. doi:0732-183X/01/1908-2302CrossRefGoogle ScholarPubMed
Palmer, S.L., Hassall, T., Evankovich, K., Mabbott, D.J., Bonner, M., Deluca, C., Gajjar, A. (2010). Neurocognitive outcome 12 months following cerebellar mutism syndrome in pediatric patients with medulloblastoma. Neurooncology, 12, 13111317. doi:10.1093/neuonc/noq094Google ScholarPubMed
Papazoglou, A., King, T.Z., Morris, R.D., Krawiecki, N.S. (2008). Cognitive predictors of adaptive functioning vary according to pediatric brain tumor location. Developmental Neuropsychology, 33, 505520. doi:10.1080/87565640802101490CrossRefGoogle ScholarPubMed
Patel, S.K., Mullins, W.A., O'Neil, S.H., Wilson, K. (2011). Neuropsychological differences between survivors of supratentorial and infratentorial brain tumours. Journal of Intellectual Disabilities Research, 55, 3040. doi:10.1111/j.1365-2788.2010.01344.xCrossRefGoogle ScholarPubMed
Prentice, D.A., Miller, D.T. (1992). When small effects are impressive. Psychological Bulletin, 112, 160164. doi:10.1037/0033-2909.112.1.160CrossRefGoogle Scholar
Radcliffe, J., Bunin, G.R., Sutton, L.N., Goldwein, J.W., Phillips, P.C. (1994). Cognitive deficits in long-term survivors of childhood medulloblastoma and other noncortical tumors: Age-dependent effects of whole brain radiation. International Journal of Developmental Neuroscience, 12, 327334. doi:0736-5748/94CrossRefGoogle ScholarPubMed
Reeves, C.B., Palmer, S.L., Reddick, W.E., Merchant, T.E., Buchanan, G.M., Gajjar, A., Mulhern, R.K. (2006). Attention and memory functioning among pediatric patients with meduloblastoma. Journal of Pediatric Psychology, 31, 272280. doi:10.1093/jpepsy/jsj019CrossRefGoogle Scholar
Reimers, T.S., Ehrenfels, S., Mortensen, E.L., Schmiegelow, M., Sonderkaer, S., Carstensen, H., Muller, J. (2003). Cognitive deficits in long-term survivors of childhood brain tumors: Identification of predictive factors. Medical and Pediatric Oncology, 40, 2634. doi:10.1002/mpo.10211CrossRefGoogle ScholarPubMed
Riva, D., Giorgi, C. (2000). The cerebellum contributes to higher functions during development: Evidence from a series of children surgically treated for posterior fossa tumours. Brain, 123, 10511061. doi:10.1093/brain/123.5.1051CrossRefGoogle ScholarPubMed
Riva, D., Giorgi, C., Nichelli, F., Bulgheroni, S., Massimino, M., Cefalo, G., Pantaleoni, C. (2002). Intrathecal methotrexate affects cognitive function in children with medulloblastoma. Neurology, 59, 4853.CrossRefGoogle ScholarPubMed
Robinson, K.E., Kuttesch, J.F., Champion, J.E., Andreotti, C.F., Hipp, D.W., Bettis, A., Compas, B.E. (2010). A quantitative meta-analysis of neurocognitive sequelae in survivors of pediatric brain tumors. Pediatric Blood and Cancer, 55, 525531. doi:10.1002/pbc.22568CrossRefGoogle ScholarPubMed
Ronning, C., Sundet, K., Due-Tonnessen, B., Lundar, T., Helseth, E. (2005). Persistent cognitive dysfunction secondary to cerebellar injury in patients treated for posterior fossa tumors in childhood. Pediatric Neurosurgery, 41, 521. doi:10.1159/000084860CrossRefGoogle ScholarPubMed
Rosenthal, R. (1991). Meta-analysis procedures for social research: Applied social research methods series, Vol. 6. Beverly Hills: Sage Publication.CrossRefGoogle Scholar
Scott, R.B., Stoodley, C.J., Anslow, P., Paul, C., Stein, J.F., Sugden, E.M., Mitchell, C.D. (2001). Lateralized cognitive deficits in children following cerebellar lesions. Developmental Medicine and Child Neurology, 43, 685691. doi:10.1017/S0012162201001232CrossRefGoogle ScholarPubMed
Shadish, W.R., Haddock, C.K. (1994). Combining estimates of effect size. In H. Cooper & L.V. Hedges, (Eds.), The handbook of research synthesis (pp. 261281). New York, NY: Russell Sage Foundation.Google Scholar
Silber, J.H., Radcliffe, J., Peckham, V., Perilongo, G., Kishnani, P., Fridman, M., Meadows, A.T. (1992). Whole-brain irradiation and decline in intelligence: The influence of dose and age on IQ score. Journal of Clinical Oncology, 10, 13901396. doi:0732-183X/92/1009-0005CrossRefGoogle ScholarPubMed
Stargatt, R., Rosenfeld, J.V., Maixner, W., Ashley, D. (2007). Multiple factors contribute to neuropsychological outcome in children with posterior fossa tumors. Developmental Neuropsychology, 32, 720748. doi:10.1080/87565640701376151CrossRefGoogle ScholarPubMed
Steinlin, M., Imfeld, S., Zulauf, P., Boltshauser, E., Lovblad, K., Luthy, A.R., Kaufmann, F. (2003). Neuropsychological long-term sequelae after posterior fossa tumour resection during childhood. Brain, 126, 19982008. doi:10.1093/brain/awg195CrossRefGoogle ScholarPubMed
Yang, T., Wong, T., Cheng, L., Chang, T., Hsu, T., Chen, S., Chuang, T. (1997). Neuropsychological sequelae after treatment for medulloblastoma in childhood: The Taiwan experience. Child's Nervous System, 13, 7780. doi:10.1007/s003810050046CrossRefGoogle ScholarPubMed
Zebrack, B.J., Gurney, J.G., Oeffinger, K., Whitton, J., Packer, R.J., Mertens, A., Zeltzer, L.K. (2004). Psychological outcomes in long-term survivors of childhood brain cancer: A report from the Childhood Cancer Survivor Study. Journal of Clinical Oncology, 22, 9991006.CrossRefGoogle ScholarPubMed