Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-15T07:26:28.544Z Has data issue: false hasContentIssue false

Inhibition and Switching in Healthy Aging: A Longitudinal Study

Published online by Cambridge University Press:  12 December 2016

Steinunn Adólfsdóttir*
Affiliation:
Department of Biological and Medical Psychology, University of Bergen, Norway
Daniel Wollschlaeger
Affiliation:
Institute for Medical Statistics, Epidemiology and Informatics, University Medical Center of the Johannes-Gutenberg-University Mainz, Mainz, Germany
Eike Wehling
Affiliation:
Department of Biological and Medical Psychology, University of Bergen, Norway Kavli Centre for Aging and Dementia Research, Haraldsplass Hospital, Bergen, Norway Department of Physical Medicine and Rehabilitation, Haukeland University Hospital, Bergen, Norway
Astri J. Lundervold
Affiliation:
Department of Biological and Medical Psychology, University of Bergen, Norway K.G. Jebsen Center for Research on Neuropsychiatric Disorders, University of Bergen, Norway
*
Correspondence and reprint requests to: Steinunn Adólfsdóttir, Department of Biological and Medical Psychology, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway. E-mail: steinunn.adolfsdottir@ uib.no

Abstract

Objectives: Discrepant findings of age-related effects between cross-sectional and longitudinal studies on executive function (EF) have been described across different studies. The aim of the present study was to examine longitudinal age effects on inhibition and switching, two key subfunctions of EF, calculated from results on the Color Word Interference Test (CWIT). Methods: One hundred twenty-three healthy aging individuals (average age 61.4 years; 67% women) performed the CWIT up to three times, over a period of more than 6 years. Measures of inhibition, switching, and combined inhibition and switching were analyzed. A longitudinal linear mixed effects models analysis was run including basic CWIT conditions, and measures of processing speed, retest effect, gender, education, and age as predictors. Results: After taking all predictors into account, age added significantly to the predictive value of the longitudinal models of (i) inhibition, (ii) switching, and (iii) combined inhibition and switching. The basic CWIT conditions and the processing speed measure added to the predictive value of the models, while retest effect, gender, and education did not. Conclusions: The present study on middle-aged to older individuals showed age-related decline in inhibition and switching abilities. This decline was retained even when basic CWIT conditions, processing speed, attrition, gender, and education were controlled. (JINS, 2017, 23, 90–97)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adólfsdóttir, S., Haász, J., Wehling, E., Ystad, M., Lundervold, A., & Lundervold, A. J. (2014). Salient measures of inhibition and switching are associated with frontal lobe gray matter volume in healthy middle-aged and older adults. Neuropsychology, 8(6), 859869. doi:/10.1037/neu0000082 CrossRefGoogle Scholar
Alvarez, J. A., & Emory, E. (2006). Executive function and the frontal lobes: A meta-analytic review. Neuropsychology Review, 16(1), 1742. doi: 10.1007/s11065-006-9002-x Google Scholar
Baayen, R. H., & Milin, P. (2010). Analyzing reaction times. International Journal of Psychological Research, 3.2, 1228.CrossRefGoogle Scholar
Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 148. doi: 10.18637/jss.v067.i01 Google Scholar
Beck, A. T., Steer, R. A., & Brown, G. K. (1987). Beck Depression Inventory (2nd ed.). San Antonio, TX: Psychological Corporation.Google Scholar
Bugg, J. M., DeLosh, E. L., Davalos, D. B., & Davis, H. P. (2007). Age differences in Stroop interference: Contributions of general slowing and task-specific deficits. Aging, Neuropsychology, and Cognition, 14(2), 155167. doi: 10.1080/138255891007065 Google Scholar
Calamia, M., Markon, K., & Tranel, D. (2012). Scoring higher the second time around: Meta-analyses of practice effects in neuropsychological assessment. The Clinical Neuropsychologist, 26, 543570. doi: 10.1080/13854046.2012.680913 Google Scholar
Cepeda, N. J., Kramer, A. F., & Gonzalez de Sather, J. C. M. (2001). Changes in executive control across the life span: Examination of task-switching performance. Developmental Psychology, 37(5), 715730. doi: 10.1037//0012-1649.37.5.715 Google Scholar
Delis, D. C., Kaplan, E., & Kramer, J. H. (2001). Delis-Kaplan Executive Function System (D-KEFS). Antonio, TX: The Psychological Corporation.Google Scholar
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135168. doi: 10.1146/annurev-psych-113011-143750 CrossRefGoogle ScholarPubMed
Ferrer, E., Salthouse, T. A., McArdle, J. J., Stewart, W. F., & Schwartz, B. S. (2005). Multivariate modeling of age and retest in longitudinal studies of cognitive abilities. Psychology and Aging, 20, 412422. doi: 10.1037/0882-7974.20.3.412 CrossRefGoogle ScholarPubMed
Ferrer, E., Salthouse, T. A., Stewart, W. F., & Schwartz, B. S. (2004). Modeling age and retest processes in longitudinal studies of cognitive abilities. Psychology and Aging, 19, 243259. doi: 10.1037/0882-7974 .19.2.243 Google Scholar
Finkel, D., Reynolds, C. A., Larsson, M., Gatz, M., & Pedersen, N. L. (2011). Both odor identification and ApoE-epsilon4 contribute to normative cognitive aging. Psychology and Aging, 26(4), 872883. doi: 10.1037/a0023371 CrossRefGoogle ScholarPubMed
Friedman, N. P., & Miyake, (2004). The relations among inhibition and interference control functions: A latent-variable analysis. Journal of Experimental Psychology: General, 133(1), 101135. doi: 10.1037/0096-3445.133.1.101 CrossRefGoogle ScholarPubMed
Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189198. doi: 10.1016/0022-3956(75)90026-6 Google Scholar
Galecki, A., & Burzykowski, N. (2013). Linear mixed-effects models using R: A step-by-step approach. New York, NY: Springer.CrossRefGoogle Scholar
Goh, J. O., An, Y., & Resnick, S. M. (2010). Differential trajectories of age-related changes in components of executive and memory processes. Psychology and Aging, 27(3), 707719. doi: 10.1037/a0026715 CrossRefGoogle Scholar
Halekoh, U., & Højsgaard, S. (2014). A Kenward-Roger approximation and parametric bootstrap methods for tests in linear mixed models - The R Package pbkrtest. Journal of Statistical Software, 59, 130.CrossRefGoogle Scholar
Halleland, H. B., Haavik, J., & Lundervold, A. J. (2012). Set-shifting in adults with ADHD. Journal of the International Neuropsychological Society, 18, 728737. doi: 10.1017/S1355617712000355 Google Scholar
Hasher, L., & Zacks, R. T. (1988). Working memory, comprehension, and aging: A review and a new view. In G. H. Bower (Ed.), The psychology of learning and motivation (Vol. 22, pp. 193225). San Diego, CA: Academic Press.Google Scholar
Head, D., Rodrigue, K. M., Kennedy, K. M., & Raz, N. (2008). Neuroanatomical and cognitive mediators of age-related differences in episodic memory. Neuropsychology, 22(4), 491507. doi: 10.1037/0894-4105.22.4.491 CrossRefGoogle ScholarPubMed
Joy, S., Kaplan, E., & Fein, D. (2004). Speed and memory in the WAIS-III Digit Symbol–Coding subtest across the adult lifespan. Archives of Clinical Neuropsychology, 19, 759767. doi: 10.1016/j.acn.2003.09.009 Google Scholar
Kennedy, K. M., & Raz, N. (2009). Aging white matter and cognition: Differential effects of regional variations in diffusion properties on memory, executive functions, and speed. Neuropsychologia, 47, 916927. doi: 10.1016/j.neuropsychologia.2009.01.001 Google Scholar
Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp, A. M., & Koch, I. (2010). Control and interference in task switching - A review. Psychological Bulletin, 136, 849874. doi: 10.1037/a0019842 CrossRefGoogle ScholarPubMed
Klein, M., Ponds, R. W., Houx, P. J., & Jolles, J. (1997). Effect of test duration on age-related differences in Stroop interference. Journal of Clinical and Experimental Neuropsychology, 19(1), 7782. doi: 10.1080/01688639708403838 CrossRefGoogle ScholarPubMed
Koch, I., Gade, M., Schuch, S., & Philipp, A. M. (2010). The role of inhibition in task switching: A review. Psychonomic Bulletin & Review, 17, 114. doi: 10.3758/PBR.17.1.1 CrossRefGoogle ScholarPubMed
Kramer, A.F., Hahn, S., & Gopher, D. (1999). Task coordination and aging: Explorations of executive processing in the task switching paradigm. Acta Psychologica, 101, 339378. doi: 10.1016/S0001-6918(99)00011-6 CrossRefGoogle ScholarPubMed
Kramer, J. H., Quitania, L., Dean, D., Neuhaus, J., Rosen, H. J., Halabi, C., & Miller, B. L. (2007). Magnetic resonance imaging correlates of set shifting. Journal of the International Neuropsychological Society, 13(3), 386392. doi: 10.1017/S1355617707070567 Google Scholar
Lezak, M. D., Howieson, D. B., & Loring, D. W. (2004). Neuropsychological assessment (4th ed.). Oxford: Oxford University Press.Google Scholar
Lundervold, A. J., Wollschläger, D., & Wehling, E. (2014). Age and sex related changes in episodic memory function in middle aged and older adults. Scandinavian Journal of Psychology, 55(3), 225232. doi: 10.1111/sjop Google Scholar
Mantel, N. (1970). Why stepdown procedures in variable selection. Technometrics, 128, 621625.Google Scholar
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49100. doi: 10.1006/cogp.1999.0734 Google Scholar
Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4(2), 133142.CrossRefGoogle Scholar
Nigg, J. T. (2000). On inhibition/disinhibition in developmental psychopathology: Views from cognitive and personality psychology and a working inhibition taxonomy. Psychological Bulletin, 126(2), 220246. doi: 10.1037//0033-2909.126.2.220 CrossRefGoogle Scholar
Nilsson, L. G. (2012). Cognitive aging: Methodological considerations and some theoretical consequences. Psychologica Belgica, 52(2-3), 151171.Google Scholar
Nyberg, L., Lövdén, M., Riklund, K., Lindenberger, U., & Bäckman, L. (2012). Memory aging and brain maintenance. Trends in Cognitive Science, 16(5), 292305.CrossRefGoogle ScholarPubMed
Pa, J., Possin, K. L., Wilson, S. M., Quitania, L. C., Kramer, J. H., Boxer, A. L., & Johnson, J. K. (2010). Gray matter correlates of set-shifting among neurodegenerative disease, mild cognitive impairment, and healthy older adults. Journal of the International Neuropsychological Society, 16(4), 640650. doi: 10.1017/S1355617710000408 Google Scholar
Pinheiro, J. C., & Bates, D. M. (2000). Mixed effects models in S and S-PLUS. New York: Springer.Google Scholar
Royston, P., & Sauerbrei, W. (2008). Multivariable model-building: A pragmatic approach to regression analysis based on fractional polynomials for modelling continuous variables. Chichester: Wiley.CrossRefGoogle Scholar
Rönnlund, M., Nyberg, L., Bäckman, L., & Nilsson, L. G. (2005). Stability, growth, and decline in adult life-span development of declarative memory: Cross-sectional and longitudinal data from a population-based sample. Psychology and Aging, 20, 318. doi: 10.1037/0882-7974.20.1.3 Google Scholar
Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103(3), 403428. doi: 10.1037/0033-295X.103.3.403 Google Scholar
Salthouse, T. A., & Tucker-Drob, E. M. (2008). Implications of short-term retest effects for the interpretation of longitudinal change. Neuropsychology, 22(6), 800811. doi: 10.1037/a0013091 Google Scholar
Salthouse, T. A. (2009). When does age-related cognitive decline begin? Neurobiology of Aging, 30(4), 507514. doi: 10.1016/j.neurobiolaging.2008.09.023 Google Scholar
Salthouse, T. A. (2010). Influence of age on practice effects in longitudinal neurocognitive change. Neuropsychology, 24(5), 563572. doi: 10.1037/a0019026 Google Scholar
Salthouse, T. A. (2012a). Consequences of age-related cognitive declines. Annual Review of Psychology, 63, 201226.Google Scholar
Salthouse, T. A. (2012b). Robust cognitive change. Journal of the International Neuropsychological Society, 18, 749756. doi: 10.1017/S1355617712000380 Google Scholar
Salthouse, T. A., & Soubelet, A. (2014). Heterogeneous ability profiles may be a unique indicator of impending cognitive decline. Neuropsychology, 28(5), 812818. doi: 10.1037/neu0000100 CrossRefGoogle ScholarPubMed
Starns, J. J., & Ratcliff, R. (2010). The effects of aging on the speed-accuracy compromise: Boundary optimality in the diffusion model. Psychology of Aging, 25(2), 377390. doi: 10.1037/a0018022 CrossRefGoogle ScholarPubMed
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Nashville, TN: George Peabody College for Teachers.CrossRefGoogle Scholar
Stuss, D. T., & Levine, B. (2002). Adult clinical neuropsychology: Lessons from studies of the frontal lobes. Annual Review of Psychology, 53, 401433. doi: 10.1146/annurev.psych.53.100901.135220 CrossRefGoogle ScholarPubMed
Troyer, A. K., Leach, L., & Strauss, E. (2006). Aging and response inhibition: Normative data for the Victoria Stroop Test. Aging, Neuropsychology, and Cognition, 13(1), 2035. doi: 10.1080/138255890968187 Google Scholar
Van der Elst, W., Van Boxtel, M. P., Van Breukelen, G. J., & Jolles, J. (2006). The Stroop color-word test: Influence of age, sex, and education; and normative data for a large sample across the adult age range. Assessment, 13(1), 6279. doi: 10.1177/1073191105283427 Google Scholar
Van der Elst, W., Van Boxtel, M. P., Van Breukelen, G. J., & Jolles, J. (2008). Detecting the significance of changes in performance on the Stroop Color-Word Test, Rey’s Verbal Learning Test, and the Letter Digit Substitution Test: The regression-based change. Journal of the International Neuropsychological Society, 14, 7180. doi: 10.10170S1355617708080028 Google Scholar
Van der Elst, W., Molenberghs, G., Van Boxtel, M. P. J., & Jolles, J. (2013). Establishing normative data for repeated cognitive assessment: A comparison of different statistical methods. Behavior Research Methods, 45, 10731086. doi: 10.3758/s13428-012-0305-y CrossRefGoogle ScholarPubMed
Verhaeghen, P. (2011). Aging and executive control: Reports of a demise greatly exaggerated. Current Directions in Psychological Science, 20, 174180. doi: 10.1177/0963721411408772 Google Scholar
Verhaeghen, P., & De Meersman, L. (1998). Aging and the Stroop effect: A meta-analysis. Psychology and Aging, 13, 120126. doi: 10.1037/0882-7974.13.1.120 CrossRefGoogle ScholarPubMed
Wheatley, D. M., Scialfa, C. T., Boot, W., Kramer, A., & Alexander, A. (2012). Minimal age-related deficits in task switching, inhibition, and oculomotor control. Experimental Aging Research, 38(1), 110129. doi: 10.1080/0361073X.2012.637018 Google Scholar
Wechsler, D. (1981). Wechsler Adult Intelligence Scale—Revised manual. New York, NY: Psychological Corporation.Google Scholar
Wechsler, D. (1999). Wechsler Abbreviated Scale of Intelligence. New York, NY: The Psychological Corporation: Harcourt Brace & Company.Google Scholar
Wecker, N. S., Kramer, J. H., Hallam, B. J., & Delis, D. C. (2005). Mental flexibility: Age effects on switching. Neuropsychology, 19(3), 345352. doi: 10.1037/0894-4105.19.3.345 CrossRefGoogle ScholarPubMed
Wehling, E. I., Wollschläger, D., Nordin, S., & Lundervold, A. J. (2016). Longitudinal changes in odor identification performance and neuropsychological measures in aging individuals. Neuropsychology, 30, 8797. doi: 10.1037/neu0000212 Google Scholar
West, B. T., Welch, K. B., & Galecki, A. T. (2014). Linear mixed models: A practical guide using statistical software. Boca Raton, FL: Chapman and Hall/CRS.Google Scholar
Westerhausen, R., Kompus, K., & Hugdahl, K. (2011). Impaired cognitive inhibition in schizophrenia: A meta-analysis of the Stroop interference effect. Schizophrenia Research, 133(1-3), 172181. doi: 10.1016/j.schres.2011.08.025 Google Scholar
Wilson, R. S., Beckett, L. A., Barnes, L. L., Schneider, J. A., Bach, J., Evans, D. A., & Bennett, D. A. (2002). Individual differences in rates of change in cognitive abilities of older persons. Psychology and Aging, 17(2), 179193. doi: 10.1037/0882-7974.17.2.179 Google Scholar
Wolf, D., Zschutschke, L., Scheurich, A., Schmitz, F., Lieb, K., Tüscher, O., & Fellgiebel, A. (2014). Age-related increases in stroop interference: delineation of general slowing based on behavioral and white matter analyses. Human Brain Mapping, 35, 24482458. doi: 10.1002/hbm.22340 Google Scholar
Zysset, S., Schroeter, M. L., Neumann, J., & von Cramon, D. Y. (2007). Stroop interference, hemodynamic response and aging: An event-related fMRI study. Neurobiology of Aging, 28(6), 937946. doi: 10.1016/j.neurobiolaging.2006.05.008 Google Scholar
Supplementary material: File

Adólfsdóttir supplementary material

Appendix

Download Adólfsdóttir supplementary material(File)
File 108 KB