Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T12:51:24.016Z Has data issue: false hasContentIssue false

Functional MRI neuroanatomic correlates of the Hooper Visual Organization Test

Published online by Cambridge University Press:  01 November 2004

CHAD H. MORITZ
Affiliation:
Department of Radiology, University of Wisconsin Medical School, Madison Department of Medical Physics, University of Wisconsin Medical School, Madison
STERLING C. JOHNSON
Affiliation:
Department of Medicine, University of Wisconsin Medical School, Madison
KATHRYN M. MCMILLAN
Affiliation:
Department of Medical Physics, University of Wisconsin Medical School, Madison
VICTOR M. HAUGHTON
Affiliation:
Department of Radiology, University of Wisconsin Medical School, Madison
M. ELIZABETH MEYERAND
Affiliation:
Department of Medical Physics, University of Wisconsin Medical School, Madison

Abstract

The Hooper Visual Organization Test (VOT), a commonly applied neuropsychological test of visual spatial ability, is used for assessing patients with suspected right hemisphere, or parietal lobe involvement. A controversy has developed over whether the inferences of this test metric can be assumed to involve global, lateralized, or regional functionality. In this study, the characteristic visual organization and object naming aspects of the VOT task presentation were adapted to a functional MR imaging (fMRI) paradigm to probe the neuroanatomic correlates of this neuropsychological test. Whole brain fMRI mapping results are reported on a cohort of normal subjects. Bilateral fMRI responses were found predominantly in the posterior brain, in regions of superior parietal lobules, ventral temporal-occipital cortex, and posterior visual association areas, and to a lesser extent, the frontal eye fields bilaterally, and left dorsolateral prefrontal cortex. The results indicate a general brain region or network in which VOT impairment, due to its visuospatial and object identification demands, is possible to be detected. Discussion is made of interpretive limitations when adapting neuropsychological tests to fMRI analysis. (JINS, 2004, 10, 939–947.)

Type
Research Article
Copyright
© 2004 The International Neuropsychological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boyd, J.L. (1981). A validity study of the Hooper Visual Organization Test. Journal of Consulting and Clinical Psychology, 49, 1519.Google Scholar
Braver, T.S., Cohen, J.D., Nystrom, L.E., Jonides, J., Smith, E.E., & Noll, D.C. (1997). A parametric study of prefrontal cortex involvement in human working memory. NeuroImage, 5, 4962.Google Scholar
Callicott, J.H., Mattay, V.S., Bertolino, A., Finn, K., Coppola, R., Frank, J.A., Goldberg, T.E., & Weinberger, D.R. (1999). Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cerebral Cortex, 9, 2026.Google Scholar
Carpenter, P.A., Just, M.A., Keller, T.A., Eddy, W., & Thulborn, K. (1999). Graded functional activation in the visuospatial system with the amount of task demand. Journal of Cognitive Neuroscience, 11, 924.Google Scholar
Cirillo, M., Swearer, J., Kane, K., & Lavoie, M. (1999). Influence of perceptual organization and naming on the Hooper Visual Organization Test in an older sample. Journal of the International Neuropsychological Society, 5, 119.Google Scholar
Coello, E., Ardila, A., & Rosselli, M. (1990). Is there a cognitive marker in major depression? International Journal of Neuroscience, 50, 137145.Google Scholar
Cohen, J.D., Forman, S.D., Braver, T.S., Casey, B.J., Servan-Schreiber, D., & Noll, D.C. (1994). Activation of the prefrontal cortex in a nonspatial working memory task with functional MRI. Human Brain Mapping, 1, 293304.Google Scholar
Cohen, M.S., Kosslyn, S.M., Breiter, H.C., DiGirolamo, G.J., Thompson, W.L., Anderson, A.K., Brookheimer, S.Y., Rosen, B.R., & Belliveau, J.W. (1996). Changes in cortical activity during mental rotation. A mapping study using functional MRI. Brain, 119, 89100.Google Scholar
Fitz, A.G., Conrad, P.M., Hom, D.L., Sarff, P.L., & Majovski, L.V. (1992). Hooper Visual Organization Test Performance in Lateralized Brain Injury. Archives of Clinical Neuropsychology, 7, 243250.Google Scholar
Friston, K.J., Holmes, A.P., Poline, J.B., Grasby, P.J., Williams, S.C., Frackowiak, R.S., & Turner, R. (1995). Analysis of fMRI time-series revisited. Neuroimage, 2, 4553.Google Scholar
Friston, K.J., Holmes, A., Price, C., Buchel, C., & Worsley, K.J. (1999). Multisubject fMRI studies and conjunction analysis. Neuroimage, 10, 385396.Google Scholar
Gauthier, I., Hayward, W.G., Tarr, M.J., Anderson, A.W., Skudlarski, P., & Gore, J.C. (2002). BOLD activity during mental rotation and viewpoint-dependent object recognition. Neuron, 34, 161171.Google Scholar
Greve, K.W., Lindberg, R.F., Bianchini, K.J., & Adams, D. (2000). Construct validity and predictive value of the Hooper Visual Organization Test in stroke rehabilitation. Applied Neuropsychology, 7, 215222.Google Scholar
Gomez-Tortosa, E., del Barrio, A., Barroso, T., & Garcia Ruiz, PJ. (1996). Visual processing disorders in patients with Huntington's disease and asymptomatic carriers. Journal of Neurology, 243, 286292.Google Scholar
Grön, G., Wunderlich, A.P., Spitzer, M., Tomczak, R., & Riepe, M.W. (2000). Brain activation during human navigation: Gender-different neural networks as substrate of performance. Nature Neuroscience, 3, 404408.Google Scholar
Gruber, S.A., Rogowska, J., Holcomb, P., Soraci, S., & Yurgelun-Todd, D. (2002). Stroop performance in normal control subjects: An fMRI study. Neuroimage, 16, 349360.Google Scholar
Haxby, J.V., Grady, C.L., Horwitz, B., Ungerleider, L.G., Mishkin, M., Carson, R.E., Herscovitch, P., Schapiro, M.B., & Rapoport, S.I. (1991). Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proceedings of the National Academy of Sciences of the United States of America, 88, 16211625.Google Scholar
Hayasaka, S. & Nichols, T.E. (2003). Validating cluster size inference: Random field and permutation methods. Neuroimage, 20, 23432356.Google Scholar
Hooper, H.E. (1958). The Hooper Visual Organization Test. Los Angeles CA: Western Psychological Services.
Hooper, H.E. (1983). The Hooper Visual Organization Test (1983 ed.). Los Angeles CA: Western Psychological Services.
Jordan, K., Wustenberg, T., Heinze, H.J., Peters, M., & Jancke, L. (2002). Women and men exhibit different cortical activation patterns during mental rotation tasks. Neuropsychologia, 40, 23972408.Google Scholar
Konishi, S., Kawazu, M., Uchida, I., Kikyo, H., Asakura, I., & Miyashita, Y. (1999). Contribution of working memory to transient activation in human inferior prefrontal cortex during performance of the Wisconsin Card Sorting Test. Cerebral Cortex, 9, 745753.Google Scholar
Kraut, M., Hart, J., Jr., Soher, B.J., & Gordon, B. (1997). Object shape processing in the visual system evaluated using functional MRI. Neurology, 48, 14161420.Google Scholar
Lewis, S., Campbell, A., Takushi-Chinen, R., Brown, A., Dennis, G., Wood, D., & Weir, R. (1997). Visual organization test performance in an African American population with acute unilateral cerebral lesions. International Journal of Neuroscience, 91, 295302.Google Scholar
Love, H.G. (1970). Validation of the Hooper Visual Organization Test on a New Zealand psychiatric hospital population. Psychological Reports, 27, 915917.Google Scholar
Mesulam, M.-M. (2000). Behavioral neuroanatomy: Large scale networks, association cortex, frontal syndromes, the limbic system, and hemispheric specializations. In M.-M. Mesulam (Ed.), Principles of behavioral and cognitive neurology (2nd ed., pp. 1173). New York: Oxford University Press.
Monchi, O., Petrides, M., Petre, V., Worsley, K., & Dagher, A. (2001). Wisconsin Card Sorting revisited: Distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. Journal of Neuroscience, 21, 77337741.Google Scholar
Ng, V.W., Eslinger, J.P., Williams, S.C., Brammer, M.J., Bullmore, E.T., Andrew, C.M., Suckling, J., Morris, R.G., & Benton, A.L. (2000). Hemispheric preference in visuospatial processing: A complementary approach with fMRI and lesion studies. Human Brain Mapping, 10, 8086.Google Scholar
Ogawa, S., Menon, R.S., Tank, D.W., Kim, S.G., Merkle, H., Ellermann, J.M., & Ugurbil, K. (1993). Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophysical Journal, 64, 803812.Google Scholar
Paul, R., Cohen, R., Moser, D., Ott, B., Zawacki, T., & Gordon, N. (2001). Performance on the Hooper Visual Organizational Test in patients diagnosed with subcortical vascular dementia: Relation to naming performance. Neuropsychiatry, Neuropsychology, & Behavioral Neurology, 14, 9397.Google Scholar
Peterson, B.S., Skudlarski, P., Gatenby, J.C., Zhang, H., Anderson, A.W., & Gore, J.C. (1999). An fMRI study of Stroop word-color interference: Evidence for cingulate subregions subserving multiple distributed attentional systems. Biological Psychiatry, 45, 12371258.Google Scholar
Ragland, J.D., Turetsky, B.I., Gur, R.C., Gunning-Dixon, F., Turner, T., Schroeder, L., Chan, R., & Gur, R.E. (2002). Working memory for complex figures: An fMRI comparison of letter and fractal n-back tasks. Neuropsychology, 16, 370379.CrossRefGoogle Scholar
Richardson, E.D., Nadler, J.D., & Malloy, P.F. (1995). Neuropsychologic prediction of performance measures of daily living skills in geriatric patients. Neuropsychology, 9, 565572.Google Scholar
Sack, A.T., Hubl, D., Prvulovic, D., Formisano, E., Jandl, M., Zanella, F.E., Maurer, K., Goebel, R., Dierks, T., & Linden, D.E. (2002). The experimental combination of rTMS and fMRI reveals the functional relevance of parietal cortex for visuospatial functions. Cognitive Brain Research, 13, 8593.Google Scholar
Sarter, M., Bernston, G., & Cacioppo, J. (1996). Brain imagning and cognitive neuroscience: Toward strong inference in attributing function to structure. American Psychologist, 51, 1321.Google Scholar
Schultheis, M.T., Caplan, B., Ricker, J.H., & Woessner, R. (2000). Fractioning the Hooper: A multiple-choice response format. Clinical Neuropsychologist, 14, 196201.Google Scholar
Seidel, W.T. (1994). Applicability of the Hooper Visual Organization Test to pediatric populations: Preliminary findings. Clinical Neuropsychologist, 8, 5968.Google Scholar
Shen, L., Hu, X., Yacoub, E., & Ugurbil, K. (1998). Neural correlates of visual form and visual spatial processing. Human Brain Mapping, 8, 6071.Google Scholar
Springer, J.A., Binder, J.R., Hammeke, T.A., Swanson, S.J., Frost, J.A., Bellgowan, P.S., Brewer, C.C., Perry, H.M., Morris, G.L., & Mueller, W.M. (1999). Language dominance in neurologically normal and epilepsy subjects: A functional MR study. Brain, 122, 20332045.Google Scholar
Sterne, D.M. (1973). The Hooper Visual Organization Test and the Trail Making Tests as discriminants of brain injury. Journal of Clinical Psychology, 29, 212213.Google Scholar
Sugio, T., Inui, T., Matsuo, K., Matsuzawa, M., Glover, G.H., & Nakai, T. (1999). The role of the posterior parietal cortex in human object recognition: A functional magnetic resonance imaging study. Neuroscience Letters, 276, 4548.Google Scholar
Tagaris, G.A., Kim, S.G., Strupp, J.P., Andersen, P., Ugurbil, K., & Georgopoulos, A.P. (1996). Quantitative relations between parietal activation and performance in mental rotation. Neuroreport, 7, 773776.Google Scholar
Ungerleider, L.G. & Haxby, J.V. (1994). ‘What’ and ‘where’ in the human brain. Current Opinion in Neurobiology, 4, 157165.Google Scholar
Vannini, P., Almkvist, O., Franck, A., Jonsson, T., Volpe, U., Wiberg, M.K., Wahlund, L., & Dierks, T. (2004). Task demand modulations of visuospatial processing measured with functional magnetic resonance imaging. Neuroimage, 21, 5868.Google Scholar
Volz, H.P., Gaser, C., Hager, F., Rzanny, R., Mentzel, H.J., Kreitschmann-Andermahr, I., Kaiser, W.A., & Sauer, H. (1997). Brain activation during cognitive stimulation with the Wisconsin Card Sorting Test—A functional MRI study on healthy volunteers and schizophrenics. Psychiatry Research, 75, 145157.Google Scholar
Wang, P.L. (1977). Visual organizational ability in brain-damaged adults. Perceptual and Motor Skills, 45, 723728.Google Scholar
Weiss, E., Siedentopf, C.M., Hofer, A., Deisenhammer, E.A., Hoptman, M.J., Kremser, C., Golaszewski, S., Felber, S., Fleischhacker, W.W., & Delazer, M. (2003). Sex differences in brain activation pattern during a visuospatial cognitive task: A functional magnetic resonance imaging study in healthy volunteers. Neuroscience Letters, 344, 169172.Google Scholar
York, C.D. & Cermak, S.A. (1995). Visual perception and praxis in adults after stroke. American Journal of Occupational Therapy, 49, 543550.Google Scholar
Zysset, S., Muller, K., Lohmann, G., & von Cramon, D.Y. (2001). Color-word matching Stroop task: Separating interference and response conflict. Neuroimage, 13, 2936.Google Scholar