Hostname: page-component-669899f699-chc8l Total loading time: 0 Render date: 2025-04-30T02:49:08.921Z Has data issue: false hasContentIssue false

Flexibility of action verbs processing in Parkinson’s disease

Published online by Cambridge University Press:  25 April 2025

Chiara Giacobbe
Affiliation:
Department of Psychology, University of Campania “Luigi Vanvitelli”, Caserta, Italy
Chiara Baiano
Affiliation:
Department of Psychology, University of Campania “Luigi Vanvitelli”, Caserta, Italy
Carmine Vitale
Affiliation:
Department of Medical, Human Movement and Well-being Sciences, University “Parthenope”, Naples, Italy Clinical and Scientific Institutes (ICS) Maugeri Hermitage, Naples, Italy
Marianna Amboni
Affiliation:
Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
Gabriella Santangelo*
Affiliation:
Department of Psychology, University of Campania “Luigi Vanvitelli”, Caserta, Italy
*
Corresponding author: Gabriella Santangelo; Email: [email protected].

Abstract

Objective:

This study aims to investigate action language processing abilities in Parkinson’s disease (PD) compared to healthy controls (HCs), specifically examining whether the involvement of motor systems is influenced by task context. By focusing on implicit versus explicit task demands, the study evaluates how semantic processing differs in PD and whether these differences align with a flexible embodied cognition framework.

Methods:

The study analyzed the performance of participants on two tasks: an explicit task (semantic judgment task, SJ) and an implicit task (letter detection task, LD). PD outpatients (n = 31, mean age 64.58 years) referred to the Parkinson and Movement Disorders Unit of ICS Maugeri Hermitage were enrolled, along with a group of healthy controls (n = 31, mean age 64.19 years). Performance was measured through reaction times (RTs) and accuracy scores (Acc) during the processing of action verbs and abstract verbs.

Results:

PD patients exhibited slower RTs and lower accuracy when processing action verbs compared to abstract verbs, but only during the SJ task. Slower RTs in the SJ task were predicted by language and executive functioning (semantic fluency) and disease progression (Hoehn and Yahr stages) for both action and abstract verbs. In the LD task, slower RTs were predicted by executive functioning for action verbs and attention (measured by Trail Making Test Part B and Stroop task) for abstract verbs.

Conclusions:

The findings suggest a context-dependent involvement of the motor system in action language processing, supporting a flexible, embodied approach to conceptual semantic processing rather than an automatic one.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Neuropsychological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aarsland, D., Bronnick, K., Williams-Gray, C., Weintraub, D., Marder, K., Kulisevsky, J., Burn, D., Barone, P., Pagonabarraga, J., Allcock, L., Santangelo, G., Foltynie, T., Janvin, C., Larsen, J. P., Barker, R. A., Emre, M. (2010). Mild cognitive impairment in Parkinson disease. Neurology, 75(12), 10621069.CrossRefGoogle ScholarPubMed
Abrevaya, S., Sedeño, L., Fitipaldi, S., Pineda, D., Lopera, F., Buritica, O., Villegas, A., Bustamante, C., Gomez, D., Trujillo, N., Pautassi, R., Ibáñez, A., García, A. M., Kumfor, F. (2016). The road less traveled: Alternative pathways for action-verb processing in Parkinson’s disease. Journal of Alzheimer’s Disease, 55(4), 14291435.CrossRefGoogle Scholar
Angwin, A. J., Chenery, H. J., Copland, D. A., Murdoch, B. E., & Silburn, P. A. (2006). Self-paced reading and sentence comprehension in Parkinson 19;s disease. Journal of Neurolinguistics, 19(3), 239252.CrossRefGoogle Scholar
Aziz-Zadeh, L., Wilson, S. M., Rizzolatti, G., & Iacoboni, M. (2006). Congruent embodied representations for visually presented actions and linguistic phrases describing actions. Current Biology, 16(18), 18181823.CrossRefGoogle ScholarPubMed
Barsalou, L. W., Kyle Simmons, W., Barbey, A. K., & Wilson, C. D. (2003). Grounding conceptual knowledge in modality-specific systems. Trends in Cognitive Sciences, 7(2), 8491.CrossRefGoogle ScholarPubMed
Barsalou, L. W. (2008). Cognitive and neural contributions to understanding the conceptual system. Current Directions in Psychological Science, 17(2), 9195.CrossRefGoogle Scholar
Bastiaanse, R., & Leenders, K. L. (2009). Language and Parkinson’s disease. Cortex, 45(8), 912914.CrossRefGoogle ScholarPubMed
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B, 57(1), 289300 https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.CrossRefGoogle Scholar
Bertella, L., Albani, G., Greco, E, Priano, L, Mauro, A, Marchi, S, Bulla, D, & Semenza, C (2002). Noun verb dissociation in parkinson’s disease. Brain and Cognition, 48(2-3), 277280 http://www.ncbi.nlm.nih.gov/pubmed/12030451 Google ScholarPubMed
Binder, J. R., Westbury, C. F., McKiernan, K. A., Possing, E. T., & Medler, D. A. (2005). Distinct brain systems for processing concrete and abstract concepts. Journal of Cognitive Neuroscience, 17(6), 905917.CrossRefGoogle ScholarPubMed
Birba, A., García-Cordero, I., Kozono, G., Legaz, A., Ibáñez, A., Sedeño, L., García, A. M. (2017). Losing ground: Frontostriatal atrophy disrupts language embodiment in Parkinson’s and huntington’s disease. Neuroscience & Biobehavioral Reviews, 80, 673687.CrossRefGoogle ScholarPubMed
Bocanegra, Y., García, A. M., Pineda, D., Buriticá, O., Villegas, A., Lopera, F., Gómez, D., Gómez-Arias, C., Cardona, J. F., Trujillo, N., Ibáñez, A. (2015). Syntax, action verbs, action semantics, and object semantics in Parkinson’s disease: Dissociability, progression, and executive influences. Cortex, 69, 237254.CrossRefGoogle ScholarPubMed
Boulenger, V., Hauk, O., & Pulvermüller, F. (2009). Grasping ideas with the motor system: Semantic somatotopy in idiom comprehension. Cerebral Cortex, 19(8), 19051914.CrossRefGoogle ScholarPubMed
Boulenger, V., Mechtouff, L., Thobois, S., Broussolle, E., Jeannerod, M., Nazir, T. A. (2008). Word processing in Parkinson’s disease is impaired for action verbs but not for concrete nouns. Neuropsychologia, 46(2), 743756.CrossRefGoogle Scholar
Bowie, C. R., & Harvey, P. D. (2006). Administration and interpretation of the trail making test. Nature Protocols, 1(5), 22772281.CrossRefGoogle ScholarPubMed
Buccino, G., Riggio, L., Melli, G., Binkofski, F., Gallese, V., Rizzolatti, G. (2005). Listening to action-related sentences modulates the activity of the motor system: A combined TMS and behavioral study. Cognitive Brain Research, 24(3), 355363.CrossRefGoogle ScholarPubMed
Cardona, J. F., Gershanik, O., Gelormini-Lezama, C., Houck, A. L., Cardona, S., Kargieman, L., Trujillo, N., Arévalo, A., Amoruso, L., Manes, F., Ibáñez, A. (2013). Action-verb processing in Parkinson’s disease: New pathways for motor-language coupling. Brain Structure and Function, 218(6), 13551373.CrossRefGoogle ScholarPubMed
Cotelli, M., Borroni, B., Manenti, R., Zanetti, M., Arévalo, A., Cappa, S. F., & Padovani, A. (2007). Action and object naming in Parkinson’s disease without dementia. European Journal of Neurology, 14(6), 632637.CrossRefGoogle ScholarPubMed
Crepaldi, D., Berlingeri, M., Paulesu, E., & Luzzatti, C. (2011). A place for nouns and a place for verbs? A critical review of neurocognitive data on grammatical-class effects. Brain and Language, 116(1), 3349.CrossRefGoogle Scholar
Dirnberger, G., & Jahanshahi, M. (2013). Executive dysfunction in Parkinson’s disease: A review. Journal of Neuropsychology, 7(2), 193224.CrossRefGoogle ScholarPubMed
Druks, J. (2002). Verbs and nouns – a review of the literature. Journal of Neurolinguistics, 15(3-5), 289315.CrossRefGoogle Scholar
Ellfolk, U., Joutsa, J., Rinne, J. O., Parkkola, R., Jokinen, P., & Karrasch, M. (2014). Striatal volume is related to phonemic verbal fluency but not to semantic or alternating verbal fluency in early parkinson’s disease. Journal of Neural Transmission, 121(1), 3340.CrossRefGoogle ScholarPubMed
Faroqi-Shah, Y., Sebastian, R., & Woude, A. V. (2018). Neural representation of word categories is distinct in the temporal lobe: An activation likelihood analysis. Human Brain Mapping, 39(12), 49254938.CrossRefGoogle ScholarPubMed
Fernandino, L., Conant, L. L., Binder, J. R., Blindauer, K., Hiner, B., Spangler, K., & Desai, R. H. (2013). Parkinson’s disease disrupts both automatic and controlled processing of action verbs. Brain and Language, 127(1), 6574.CrossRefGoogle ScholarPubMed
Ferrand, L., Grainger, J., & Segui, J. (1994). A study of masked form priming in picture and word naming. Memory & Cognition, 22(4), 431441.CrossRefGoogle ScholarPubMed
Gallese, V., & Lakoff, G. (2005). The brain’s concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22(3-4), 455479.CrossRefGoogle ScholarPubMed
Giacobbe, C., Raimo, S., Cropano, M., & Santangelo, G. (2022). Neural correlates of embodied action language processing: A systematic review and meta-analytic study. Brain Imaging and Behavior, 16(5), 23532374.CrossRefGoogle ScholarPubMed
Gijssels, T., Ivry, R. B., & Casasanto, D. (2018). TDCS to premotor cortex changes action verb understanding: Complementary effects of inhibitory and excitatory stimulation. Scientific Reports, 8(1), 11452.CrossRefGoogle ScholarPubMed
Grezes, J., & Decety, J. (2001). Functional anatomy of execution, mental simulation, observation, and verb generation of actions: A meta-analysis. Human Brain Mapping, 12(1), 119 3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Grossman, M., Koenig, P., DeVita, C., Glosser, G., Alsop, D., Detre, J., & Gee, J. (2002). Neural representation of verb meaning: An fMRI study. Human Brain Mapping, 15(2), 124134.CrossRefGoogle ScholarPubMed
Hauk, O. (2016). What Does It Mean? A Review of the Neuroscientific Evidence for Embodied Lexical Semantics. In Neurobiology of Language (pp. 777788). Elsevier, https://doi.org/10.1016/B978-0-12-407794-2.00062-6CrossRefGoogle Scholar
Hauk, O., Johnsrude, I., & Pulvermüller, F. (2004). Somatotopic representation of action words in human motor and premotor cortex. Neuron, 41(2), 301307.CrossRefGoogle Scholar
Herrera, E., Bermúdez-Margaretto, B., Ribacoba, R., & Cuetos, F. (2015). The motor-semantic meanings of verbs generated by Parkinson’s disease patients on/off dopamine medication in a verbal fluency task. Journal of Neurolinguistics, 36, 7278.CrossRefGoogle Scholar
Houk, J. C. (2005). Agents of the mind. Biological Cybernetics, 92(6), 427437.CrossRefGoogle ScholarPubMed
Kinoshita, S., De Wit, B., & Norris, D. (2017). The magic of words reconsidered: Investigating the automaticity of reading color-neutral words in the Stroop task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(3), 369384.Google ScholarPubMed
Laudanna, A., Thornton, A. M., Brown, G., Burani, C., & Marconi, L. (1995). Un corpus dell’italiano scritto contemporaneo dalla parte del ricevente. In Bolasco, S., Lebart, L., & Salem, A. (Eds.), III Giornate internazionali di analisi statistica dei dati testuali (Vol. I (pp. 103109). Cisu.Google Scholar
Litvan, I., Goldman, J. G., Tröster, A. I., Schmand, B. A., Weintraub, D., Petersen, R. C., Mollenhauer, B., Adler, C. H., Marder, K., Williams-Gray, C. H., Aarsland, D., Kulisevsky, J., Rodriguez-Oroz, M. C., Burn, D. J., Barker, R. A., & Emre, M. (2012). Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement disorder society task force guidelines. Movement disorders : official journal of the Movement Disorder Society, 27(3), 349356.CrossRefGoogle ScholarPubMed
Low, K. A., Miller, J., & Vierck, E. (2002). Response slowing in Parkinson’s disease: A psychophysiological analysis of premotor and motor processes. Brain, 125(9), 19801994.CrossRefGoogle ScholarPubMed
Lukic, S., Borghesani, V., Weis, E., Welch, A., Bogley, R., Neuhaus, J., Deleon, J., Miller, Z. A., Kramer, J. H., Miller, B. L., Dronkers, N. F., & Gorno-Tempini, M. L. (2021). Dissociating nouns and verbs in temporal and perisylvian networks: Evidence from neurodegenerative diseases. Cortex, 142, 4761.CrossRefGoogle ScholarPubMed
Modestino, E. J., Reinhofer, A., Blum, K., Amenechi, C., & O’Toole, P. (2018). Hoehn and yahr staging of Parkinson’s disease in relation to neuropsychological measures. Frontiers in Bioscience, 23(7), 13701379.CrossRefGoogle ScholarPubMed
Nie, K., Gao, Y., Mei, M., Guo, M., Huang, Z., Wang, L., Zhao, J., Zhang, Y., & Wang, L. (2019). The clinical characteristics and cognitive features of mild cognitive impairment in Parkinson’s disease and the analysis of relevant factors. Journal of Clinical Neuroscience, 63, 142148.CrossRefGoogle ScholarPubMed
Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97113.CrossRefGoogle ScholarPubMed
Pedersen, K. F., Larsen, J. P., Tysnes, O.-B., & Alves, G. (2013). Prognosis of mild cognitive impairment in early Parkinson disease. JAMA Neurology, 70(5), 580.CrossRefGoogle ScholarPubMed
Péran, P., Cardebat, D., Cherubini, A., Piras, F., Luccichenti, G., Peppe, A., Caltagirone, C., Rascol, O., Démonet, J.-F. ç, & Sabatini, U. (2009). Object naming and action-verb generation in Parkinson’s disease: A fMRI study. Cortex, 45(8), 960971.CrossRefGoogle ScholarPubMed
Pobric, G., & Hamilton, A. F. (2006). Action understanding requires the left inferior frontal cortex. Current Biology, 16(5), 524529.CrossRefGoogle ScholarPubMed
Postuma, R. B., Berg, D., Stern, M., Poewe, W., Olanow, C. W., Oertel, W., Obeso, , Marek, K., Litvan, I., Lang, A. E., Halliday, G., Goetz, C. G., Gasser, T., Dubois, B., Chan, P., Bloem, B. R., Adler, C. H., & Deuschl, G. (2015). MDS clinical diagnostic criteria for Parkinson’s disease. Movement disorders, 30(12), 15911601.CrossRefGoogle ScholarPubMed
Pulvermüller, F. (2005). Brain mechanisms linking language and action. Nature Reviews Neuroscience, 6(7), 576582.CrossRefGoogle ScholarPubMed
Pulvermüller, F. (2018). Neurobiological mechanisms for semantic feature extraction and conceptual flexibility. Topics in Cognitive Science, 10(3), 590620.CrossRefGoogle ScholarPubMed
Pulvermüller, F., & Fadiga, L. (2010). Active perception: Sensorimotor circuits as a cortical basis for language. Nature Reviews Neuroscience, 11(5), 351360.CrossRefGoogle ScholarPubMed
Reitan, R. M. (1971). Trail making test results for normal and brain-damaged children. Perceptual and Motor Skills, 33(2), 575581.CrossRefGoogle ScholarPubMed
Salmazo-Silva, H., Parente, M. A., de, M. P., Rocha, M. S., Baradel, R. R., Cravo, A. M., Sato, J. R., Godinho, F., & Carthery-Goulart, M. T. (2017). Lexical-retrieval and semantic memory in Parkinson’s disease: The question of noun and verb dissociation. Brain and Language, 165, 1020.CrossRefGoogle ScholarPubMed
Santangelo, G., Siciliano, M., Pedone, R., Vitale, C., Falco, F., Bisogno, R., Siano, P., Barone, P., Grossi, D., Santangelo, F., Trojano, L. (2015). Normative data for the montreal cognitive assessment in an italian population sample. Neurological Sciences, 36(4), 585591.CrossRefGoogle Scholar
Schapira, A. H. V., Chaudhuri, K. R., & Jenner, P. (2017). Non-motor features of Parkinson disease. Nature Reviews Neuroscience, 18(7), 435450.CrossRefGoogle ScholarPubMed
Siciliano, M., De Micco, R., Trojano, L., De Stefano, M., Baiano, C., Passaniti, C., De Mase, A., Russo, A., Tedeschi, G., Tessitore, A. (2017). Cognitive impairment is associated with Hoehn and yahr stages in early, de novo parkinson disease patients. Parkinsonism & Related Disorders, 41, 8691.CrossRefGoogle ScholarPubMed
Taylor, B. (1977). Tense and continuity. Linguistics and Philosophy, 1(2), 199220.CrossRefGoogle Scholar
Tremblay, P., & Small, S. L. (2011). From language comprehension to action understanding and back again. Cerebral Cortex, 21(5), 11661177.CrossRefGoogle Scholar
Williams-Gray, C. H., Evans, J. R., Goris, A., Foltynie, T., Ban, M., Robbins, T. W., Brayne, C., Kolachana, B. S., Weinberger, D. R., Sawcer, S. J., Barker, R. A. (2009). The distinct cognitive syndromes of Parkinson’s disease: 5 year follow-up of the camPaIGN cohort. Brain, 132(11), 29582969.CrossRefGoogle ScholarPubMed
Williams-Gray, C. H., Foltynie, T., Brayne, C. E. G., Robbins, T. W., & Barker, R. A. (2007). Evolution of cognitive dysfunction in an incident Parkinson’s disease cohort. Brain, 130(7), 17871798.CrossRefGoogle Scholar
Zhao, B., Dang, J., & Zhang, G. (2017). EEG source reconstruction evidence for the noun-verb neural dissociation along semantic dimensions. Neuroscience, 359, 183195.CrossRefGoogle ScholarPubMed
Supplementary material: File

Giacobbe et al. supplementary material

Giacobbe et al. supplementary material
Download Giacobbe et al. supplementary material(File)
File 18.5 KB