Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T20:57:20.440Z Has data issue: false hasContentIssue false

Everyday numerical abilities in Alzheimer's disease

Published online by Cambridge University Press:  27 August 2003

Laura Martini
Affiliation:
Universitätsklinik für Neurologie, Innsbruck, Austria
Frank Domahs
Affiliation:
Universitätsklinik für Neurologie, Innsbruck, Austria
Thomas Benke
Affiliation:
Universitätsklinik für Neurologie, Innsbruck, Austria
Margarete Delazer*
Affiliation:
Universitätsklinik für Neurologie, Innsbruck, Austria
*
Reprint requests to: Dr. Margarete Delazer, Universitätsklinik für Neurologie, Anichstr.35, 6020 Innsbruck, Austria. E-mail: [email protected]

Abstract

The present study investigated everyday numerical abilities in a group of 21 patients affected by mild to moderate dementia of Alzheimer's type (DAT). Though patients did not differ from a control group in standard laboratory tests tapping transcoding, number comparison, simple calculation, and estimation, they showed significant difficulties in numerical tasks embedded in an everyday context, such as handling money, a bus schedule, or a television program. Patients' difficulties were attributed to those multiple cognitive demands which are inherent to real situations as compared to well-structured abstract paper-and-pencil tasks. Overall, the study suggests that the examination of numerical abilities in DAT patients should go beyond abstract paper-and-pencil tasks which can only partially reflect the actual numerical skills in DAT and should therefore include also tasks simulating everyday life situations. Assessment of everyday numerical skills may be crucial in planning adequate support for patients, for example in handling money, but also in designing targeted training programs. (JINS, 2003, 9, 871–878.)

Type
Research Article
Copyright
Copyright © The International Neuropsychological Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bodner, T. (2001). Uhrentests in der neuropsychologischen Demenzdiagnostik (Clock tests in neuropsychological assessment of dementia). Doctoral Thesis, Universität Innsbruck, Austria.Google Scholar
Cappelletti, M., Butterworth, B., & Kopelman, M. (2001). Spared numerical abilities in a case of semantic dementia. Neuropsychologia, 39, 12241239.CrossRefGoogle Scholar
Carlomagno, S., Iavarone, S., Nolfe, G., Bourene, G., Martin, C., & Deloche, G. (1999). Dyscalculia in the early stages of Alzheimer's disease. Acta Neurologica Scandinava, 99, 166174.CrossRefGoogle ScholarPubMed
Carraher, T., Carraher, D., & Schliemann, A. (2002). Mathematics in the streets and schools. British Journal of Developmental Psychology, 3, 2129.CrossRefGoogle Scholar
Cipolotti, L. (1995). Multiple routes for reading words, why not numbers? Evidence from a case of Arabic numeral dyslexia. Cognitive Neuropsychology, 12, 313362.CrossRefGoogle Scholar
Cipolotti, L. & Butterworth, B. (1995). Toward a multiroute model of number processing: Impaired transcoding with preserved calculation skills. Journal of Experimental Psychology: General, 124, 375379.10.1037/0096-3445.124.4.375CrossRefGoogle Scholar
Cohen, L., Dehaene, S., & Vesichel, P. (1994). Number words and number non-words. A case of deep dyslexia extending to Arabic numerals. Brain, 117, 267279.CrossRefGoogle ScholarPubMed
Copley, J. (1999). Mathematics in the early years. [1]. San Francisco, CA: National Council Teachers of Mathematics.Google Scholar
Crutch, S.J. & Warrington, E.K. (2001). Acalculia: Deficits of operational and quantity number knowledge. Journal of the International Neuropsychological Society, 7, 825834.CrossRefGoogle ScholarPubMed
Dehaene, S. & Cohen, L. (1991). Two mental calculation systems: A case study of severe acalculia with preserved approximation. Neuropsychologia, 29, 10451054.CrossRefGoogle ScholarPubMed
Dehaene, S. & Cohen, L. (1997). Cerebral pathways for calculation: Double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex, 33, 219250.10.1016/S0010-9452(08)70002-9CrossRefGoogle ScholarPubMed
De Lacoste, M.C. & White, C.L. (1993). The role of cortical connectivity in Alzheimer's disease pathogenesis: A review and model system. Neurobiology of Aging, 14, 4950.CrossRefGoogle ScholarPubMed
Delazer, M. & Girelli, L. (1997). When “Alfa Romeo” facilitates 164: Semantic effects in verbal number production. Neurocase, 3, 461475.10.1080/13554799708405022CrossRefGoogle Scholar
Deloche, G., Seron, X., Larroque, C., Magnien, C., Metz-Lutz, M.N., Noël, M.N., Riva, I., Schils, J.P., Dordain, M., & Ferrand, I. (1994). Calculation and number processing: Assessment battery; role of demographic factors. Journal of Clinical and Experimental Neuropsychology, 16, 195208.CrossRefGoogle ScholarPubMed
Deloche, G., Hannequin, D., Carlomagno, S., Agniel, A., Dordain, M., Pasquier, F., Pellat, J., Denis, P., Desi, M., & Beauchamp, D. (1995). Calculation and number processing in mild Alzheimer's disease. Journal of Clinical and Experimental Neuropsychology, 17, 634639.CrossRefGoogle ScholarPubMed
Folstein, M.F., Folstein, S.E., & McHugh, P.R. (1975). Mini mental state. Journal of Psychiatric Research, 12, 189198.CrossRefGoogle ScholarPubMed
Fox, N.C., Warrington, E.K., Seiffer, A.L., Agnew, S.K., & Rossor, M.N. (1998). Presymptomatic cognitive deficits in individuals at risk of familial Alzheimer's disease. A longitudinal prospective study. Brain, 121 (Pt 9), 16311639.CrossRefGoogle ScholarPubMed
Giannakopoulos, P., Hof, P.R., & Boura, C. (1998). Selective vulnerability of neocortical association areas in Alzheimer's disease. Microscopy Research and Techniques, 43, 1623.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Girelli, L. & Delazer, M. (2001). Numerical abilities in dementia. Aphasiology, 15, 681694.CrossRefGoogle Scholar
Girelli, L., Luzzati, C., Annoni, G., & Vecchi, T. (1999). Progressive decline of numerical skills in Alzheimer-Type dementia: A case study. Brain and Cognition, 40, 132136.Google Scholar
Grafman, J., Kampen, D., Rosenberg, J., Salazar, A.M., & Boller, F. (1989). The progressive breakdown of number processing and calculation ability: A case study. Cortex, 18, 3750.CrossRefGoogle Scholar
Griggs, R.A. & Cox, J.R. (1982). The elusive thematic-material effect in Wason's selection task. British Journal of Psychology, 11, 321337.Google Scholar
Hochberg, M.G., Russo, J., & Vitaliano, P.P. (1989). Initiation and perseveration as a subscale of the Dementia Rating Scale. Clinical Gerontologist, 8, 2741.CrossRefGoogle Scholar
Hughes, C.P., Berg, L., Danziger, W.L., Coben, L.A., & Martin, R.L. (1982). A new clinical scale for the staging of dementia. British Journal of Psychiatry, 140, 566572.CrossRefGoogle ScholarPubMed
Jacquemin, A., Calicis, F., van der Linden, M., Wyns, C., & Noël, M.P. (1991). Evaluation et prise en charge des déficits cognitifs dans les états démentiels. La rééducation neuropsychologique de l'adulte (de Partz M P and Leclercq M), Edition de la Société de Neuropsychologie de Langue Française, Paris.Google Scholar
Janowsky, J.S., Shimamura, A.P., & Squire, L.R. (1989). Source memory impairment in patients with frontal lobe lesions . Neuropsychologia, 27, 10431056.CrossRefGoogle ScholarPubMed
Kaufmann, L., Montanes, P., Jacquier, M., Matallana, D., Eibl, G., & Delazer, M. (2002). About the relationship between basic numerical processing and arithmetics in early Alzheimer's disease—A follow up study. Brain and Cognition, 48, 398405.Google ScholarPubMed
Kessler, J. & Kalbe, E. (1996). Written numeral transcoding in patients with Alzheimer's disease. Cortex, 32, 755761.CrossRefGoogle ScholarPubMed
Lezak, M.D. (1998). Neuropsychological assessment. New York, Oxford, UK: Oxford University Press.Google Scholar
Mantovan, C., Delazer, M., Ermani, M., & Denes, G. (1999). The breakdown of calculation procedures in Alzheimer's disease. Cortex, 35, 2138.CrossRefGoogle ScholarPubMed
Mattis, S. (1988). Dementia Rating Scale. Odessa, FL: Psychological Assessment Resources.Google Scholar
McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E.M. (1984). Clinical diagnosis of Alzheimer's disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology, 34, 939944.10.1212/WNL.34.7.939CrossRefGoogle ScholarPubMed
Noël, M.P. & Seron, X. (1993). Arabic number reading deficit: A single case study or when 236 is read “2306” and judged superior to 1258. Cognitive Neuropsychology, 10, 317339.CrossRefGoogle Scholar
Noël, M.P. & Seron, X. (1995). Lexicalization errors in writing Arabic numerals: A single-case study. Brain and Cognition, 29, 151179.CrossRefGoogle ScholarPubMed
Norton, L.E., Bondi, M.W., Salmon, D.P., & Goodglass, H. (1997). Deterioration of generic knowledge in patients with Alzheimer's disease: Evidence from the Number Information Test. Journal of Clinical and Experimental Neuropsychology, 19, 857866.CrossRefGoogle ScholarPubMed
Nunes, T. (1992). Ethnomathematics and everyday cognition. In Grouws, D.A. (Ed.), Handbook of mathematics teaching and learning (pp. 557574). New York: Macmillan.Google Scholar
Nunes, T. & Bryant, P. (1995). Do problem situation influence children's understanding of the commutativity of multiplication? Mathematical Cognition, 1, 245260.Google Scholar
Pesenti, M., Seron, X., & van der Linden, M. (1994). Selective impairment as evidence for mental organisation of arithmetical facts: BB, a case of preserved subtraction? Cortex, 30, 661671.CrossRefGoogle Scholar
Remond-Besuche, C., Noël, M.P., Seron, X., Thioux, M., Brun, M., & Aspe, X. (1999). Selective preservation of exceptional arithmetical knowledge in a demented patient. Mathematical Cognition, 5, 4164.CrossRefGoogle Scholar
Riley, M.S., Greeno, J.G., & Heller, J.I. (1983). Development of children's problem-solving ability in arithmetic. In Ginsburg, H.P. (Ed.), The development of mathematical thinking (pp. 153196). New York: Academic Press.Google Scholar
Rosen, W.G., Mohs, R.C., & Davis, K.L. (1984). A new rating scale for Alzheimer's disease. American Journal of Psychiatry, 141, 13561364.Google ScholarPubMed
Seron, X., Deloche, G., Ferrand, I., Cornet, J.A., Frederix, M., & Hirsbrunner, T. (1991). Dot counting by brain damaged subjects. Brain and Cognition, 17, 116137.CrossRefGoogle ScholarPubMed
Sunderland, T., Hill, J.L., Mellow, A.M., Lawlor, B.A., Gundersheimer, Y., Newhouse, P.A., & Grafman, J.H. (1989). Clock drawing in Alzheimer's disease. Journal of the American Geriatrics Society, 37, 725729.10.1111/j.1532-5415.1989.tb02233.xCrossRefGoogle ScholarPubMed
Tegner, R. & Nyback, H. (1990). “To hundred and twenty4our”: A study of transcoding in dementia. Acta Neurologica Scandinavica, 81, 177178.CrossRefGoogle ScholarPubMed
Thalmann, B., Monsch, A.U., Schneitter, M., Bernasconi, F., Aebi, C., Camachova-Davet, Z., & Stähelin, H.B. (2000). The CERAD neuropsychological assessment battery (CERAD-NAB)—A minimal dataset as a common tool for German speaking Europe. Neurobiology of Aging, 21, 30.CrossRefGoogle Scholar
Thioux, M., Seron, X., Turconi, E., & Ivanoiu, A. (1999). Intrusion of the verbal code induring the production of arabic numerals: A single case study in a patient with probable Alzheimer's disease. Cognitive Neuropsychology, 16, 749773.10.1080/026432999380636CrossRefGoogle Scholar
Warrington, E.K. & James, M. (1991). Visual Object and Space Perception Test. Suffolk, England: Bury St. Edmunds.Google Scholar
Warrington, E.K., Agnew, S.K., Kennedy, A.M., & Rossor, M.N. (2001). Neuropsychological profiles of familial Alzheimer's disease associated with mutations in the presenilin 1 and amyloid precursor protein genes. Journal of Neurology, 248, 4550.CrossRefGoogle ScholarPubMed
Wason, P.C. & Shapiro, D. (1971). Natural and contrived experience in a reasoning problem. Quarterly Journal of Experimental Psychology, 23, 6371.CrossRefGoogle Scholar
WHO (1980). International Classification of Impairments, Disabilities, and Handicaps. World Health Organization, Geneva.Google Scholar