Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-02T20:21:40.371Z Has data issue: false hasContentIssue false

Emotions Are Rising: The Growing Field of Affect Neuropsychology

Published online by Cambridge University Press:  04 December 2017

Skye McDonald*
Affiliation:
School of Psychology, University of New South Wales, Sydney
*
Correspondence and reprint requests to: Skye McDonald, School of Psychology, University of New South Wales, Sydney, 2052. E-mail: [email protected]

Abstract

Thirty years ago, the neuropsychology of emotion started to emerge as a mainstream topic. Careful examination of individual patients showed that emotion, like memory, language, and so on, could be differentially affected by brain disorders, especially in the right hemisphere. Since then, there has been accelerating interest in uncovering the neural architecture of emotion, and the major steps in this process of discovery over the past 3 decades are detailed in this review. In the 1990s, magnetic resonance imaging (MRI) scans provided precise delineation of lesions in the amygdala, medial prefrontal cortex, insula and somatosensory cortex as underpinning emotion disorders. At the same time, functional MRI revealed activation that was bilateral and also lateralized according to task demands. In the 2000s, converging evidence suggested at least two routes to emotional responses: subcortical, automatic and autonomic responses and slower, cortical responses mediating cognitive processing. The discovery of mirror neurons in the 1990s reinvigorated older views that simulation was the means to recognize emotions and empathize with others. More recently, psychophysiological research, revisiting older Russian paradigms, has contributed new insights into how autonomic and other physiological indices contribute to decision making (the somatic marker theory), emotional simulation, and social cognition. Finally, this review considers the extent to which these seismic changes in understanding emotional processes in clinical disorders have been reflected in neuropsychological practice. (JINS, 2017, 23, 719–731)

Type
Section 1 – Brain Systems and Assessment
Copyright
Copyright © The International Neuropsychological Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolphs, R. (2002a). Recognizing emotion from facial expressions: Psychological and neurological mechanisms. Behavioral & Cognitive Neuroscience Reviews, 1(1), 2162.Google Scholar
Adolphs, R. (2002b). Neural systems for recognizing emotion. Current Opinion in Neurobiology, 12, 169177.CrossRefGoogle ScholarPubMed
Adolphs, R., Damasio, H., & Tranel, D. (2002). Neural systems for recognition of emotional prosody: A 3-D lesion study. Emotion, 2(1), 2351.Google Scholar
Adolphs, R., Damasio, H., Tranel, D., & Damasio, A.R. (1996). Cortical systems for the recognition of emotion in facial expressions. Journal of Neuroscience, 16(23), 76787687.Google Scholar
Adolphs, R., Jansari, A., & Tranel, D. (2001). Hemispheric perception of emotional valence from facial expressions. Neuropsychology, 15(4), 516524.Google Scholar
Adolphs, R., & Tranel, D. (2004). Impaired judgments of sadness but not happiness following bilateral amygdala damage. Journal of Cognitive Neuroscience, 16(3), 453462.CrossRefGoogle Scholar
Adolphs, R., Tranel, D., & Damasio, A.R. (1998). The human amygdala in social judgment. Nature, 393(6684), 470474.CrossRefGoogle ScholarPubMed
Adolphs, R., Tranel, D., & Damasio, A.R. (2003). Dissociable neural systems for recognizing emotions. Brain & Cognition, 52(1), 6169.Google Scholar
Adolphs, R., Tranel, D., Damasio, A.R., & Damasio, H. (1994). Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Journal of Neuroscience, 15, 58795891.CrossRefGoogle Scholar
Adolphs, R., Tranel, D., & Damasio, H. (2001). Emotion recognition from faces and prosody following temporal lobectomy. Neuropsychology, 15(3), 396404.Google Scholar
Amodio, D.M., & Frith, C.D. (2006). Meeting of minds: the medial frontal cortex and social cognition. Nature Reviews Neuroscience, 7(4), 268277.Google Scholar
Angrilli, A., Mauri, A., Palomba, D., Flor, H., Birbaumer, N., Sartori, G., & di Paola, F. (1996). Startle reflex and emotion modulation impairment after a right amygdala lesion. Brain, 119(Pt 6), 19912000.Google Scholar
Angrilli, A., Palomba, D., Cantagallo, A., Maietti, A., & Stegagno, L. (1999). Emotional impairment after right orbitofrontal lesion in a patient without cognitive deficits. NeuroReport, 10(8), 17411746.CrossRefGoogle Scholar
Baas, D., Aleman, A., & Kahn, R.S. (2004). Lateralization of amygdala activation: a systematic review of functional neuroimaging studies. Brain Research Reviews, 45(2), 96103.Google Scholar
Babbage, D.R., Yim, J., Zupan, B., Neumann, D., Tomita, M.R., & Willer, B. (2011). Meta-analysis of facial affect recognition difficulties after traumatic brain injury. Neuropsychology, 25(3), 277285.Google Scholar
Balconi, M., & Bortolotti, A. (2013). The “simulation” of the facial expression of emotions in case of short and long stimulus duration. The effect of pre-motor cortex inhibition by rTMS. Brain and Cognition, 83, 114120.CrossRefGoogle Scholar
Baron-Cohen, S., Leslie, A.M., & Frith, U. (1985). Does the autistic child have a “theory of mind”? Cognition, 21, 3746.Google Scholar
Barrash, J., Tranel, D., & Anderson, S.W. (2000). Acquired personality disturbances associated with bilateral damage to the ventromedial prefrontal region. Developmental Neuropsychology, 18(3), 355381.Google Scholar
Bavelas, J.B., Black, A., Chovil, N., Lemery, C.R., & Mullett, J. (1988). Form and function in motor mimicry topographic evidence that the primary function is communicative. Human Communication Research, 14(3), 275299.Google Scholar
Bechara, A. (2004). The role of emotion in decision-making: Evidence from neurological patients with orbitofrontal damage. Brain and Cognition, 55(1), 3040.Google Scholar
Bechara, A., Damasio, H., Damasio, A.R., & Lee, G.P. (1999). Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. Journal of Neuroscience, 19(13), 54735481.Google Scholar
Bechara, A., Damasio, H., Tranel, D., & Damasio, A.R. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275(5304), 12931294.Google Scholar
Bechara, A., Tranel, D., & Damasio, H. (2000). Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain, 123(11), 21892202.CrossRefGoogle ScholarPubMed
Bechara, A., Tranel, D., Damasio, H., Adolphs, R., Rockland, C., & Damasio, A.R. (1995). Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science, 269, 11151118.Google Scholar
Bechara, A., Tranel, D., Damasio, H., & Damasio, A.R. (1996). Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex. Cerebral Cortex, 6(2), 215225.CrossRefGoogle ScholarPubMed
Belliveau, J.W., Kennedy, D.N. Jr., McKinstry, R.C., Buchbinder, B.R., Weisskoff, R.M., Cohen, M.S., & Rosen, B.R. (1991). Functional mapping of the human visual cortex by magnetic resonance imaging. Science, 254(5032), 716719.Google Scholar
Benton, A.L. (1968). Differential behavioural effects in frontal lobe disease. Neuropsychologia, 6, 5360.Google Scholar
Blair, R.J., & Cipolotti, L. (2000). Impaired social response reversal: A case of “acquired sociopathy”. Brain, 123, 11221141.Google Scholar
Blairy, S., Herrera, P., & Hess, U. (1999). Mimicry and the judgment of emotional facial expressions. Journal of Nonverbal Behavior, 23(1), 541.CrossRefGoogle Scholar
Boggio, P.S., Rigonatti, S.P., Ribeiro, R.B., Myczkowski, M.L., Nitsche, M.A., Pascual-Leone, A., & Fregni, F. (2008). A randomized, double-blind clinical trial on the efficacy of cortical direct current stimulation for the treatment of major depression. International Journal of Neuropsychopharmacology, 11(2), 249254.Google Scholar
Bölte, S., Feineis-Matthews, S., & Poustka, F. (2008). Brief report: Emotional processing in high-functioning autism--Physiological reactivity and affective report. Journal of Autism & Developmental Disorders, 38, 776781.CrossRefGoogle ScholarPubMed
Bornhofen, C., & McDonald, S. (2008a). Comparing strategies for treating emotion perception deficits in traumatic brain injury. Journal of Head Trauma Rehabilitation, 23, 103115.Google Scholar
Bornhofen, C., & McDonald, S. (2008b). Treating deficits in emotion perception following traumatic brain injury. Neuropsychological Rehabilitation, 18(1), 2244.Google Scholar
Borod, J.C., & Caron, H.S. (1980). Facedness and emotion related to lateral dominance, sex and expression type. Neuropsychologia, 18(2), 237242. doi: https://doi.org/10.1016/0028-3932(80)90070-6 Google Scholar
Borod, J.C., Koff, E., Lorch, M.P., & Nicholas, M. (1985). Channels of emotional expression in patients with unilateral brain damage. Archives of Neurology, 42(4), 345348.Google Scholar
Borod, J.C., Koff, E., Lorch, M.P., & Nicholas, M. (1986). The expression and perception of facial emotion in brain-damaged patients. Neuropsychologia, 24(2), 169180.Google Scholar
Borod, J.C., Tabert, M.H., Santschi, C., & Strauss, E. (2000). Neuropsychological assessment of emotional processing in brain-damaged patients. In J. Borod (Ed.), The neuropsychology of emotion (pp 80105). New York: Oxford University Press.Google Scholar
Borod, J.C., Welkowitz, J., Alpert, M., Brozgold, A., Martin, C., Peselow, E., & Diller, L. (1990). Parameters of emotional processing in neuropsychiatric disorders: Conceptual issues and a battery of tests. Journal of Communication Disorders, 23, 247271.Google Scholar
Bowers, D., Blonder, L.X., & Heilman, K.M. (1991). Florida affect battery. Gainsville, FL: Centre for Neuropsychological Studies, University of Florida.Google Scholar
Bowers, L., Huisingh, R., & LoGiudice, C. (2010). Social Language Development Test - Adolescent Manual. East Moline, IL: LinguiSystems, Inc.Google Scholar
Brooks, D.N., Campsie, L., Symington, C., Beattie, A., & McKinlay, W. (1986). The five year outcome of severe blunt head injury: A relative’s view. Journal of Neurology, Neurosurgery, & Psychiatry, 49(7), 764770.Google Scholar
Brownell, H.H., Michel, D., Powelson, J., & Gardner, H. (1983). Surprise but not coherence: Sensitivity to verbal humor in right-hemisphere patients. Brain and Language, 18, 2027.CrossRefGoogle Scholar
Bryden, M.P., Ley, R.G., & Sugarman, J.H. (1982). A left-ear advantage for identifying the emotional quality of tonal sequences. Neuropsychologia, 20(1), 8387. doi: https://doi.org/10.1016/0028-3932(82)90089-6 Google Scholar
Buchanan, T.W., Tranel, D., & Adolphs, R. (2004). Anteromedial temporal lobe damage blocks startle modulation by fear and disgust. Behavioral Neuroscience, 118(2), 429437.CrossRefGoogle ScholarPubMed
Calder, A.J., Keane, J., Manes, F., Antoun, N., & Young, A.W. (2000). Impaired recognition and experience of disgust following brain injury. Nature Neuroscience, 3(11), 10771078.Google Scholar
Carr, L., Iacoboni, M., Dubeau, M.-C., Maxzziotta, J.C., & Lenzi, G.L. (2003). Neural mechanisms of empathy in humans: A relay from neural systems for imitation to limbic areas. Proceedings of the National Academy of Science of the United States of America, 100, 54875502.Google Scholar
Cassel, A., McDonald, S., Kelly, M., & Togher, L. (2016). Learning from the minds of others: A review of social cognition treatments and their relevance to traumatic brain injury. Neuropsychological Rehabilitation, 134. doi: 10.1080/09602011.2016.1257435 Google Scholar
Cattran, C.J., Oddy, M., Wood, R.L., & Moir, J.F. (2011). Post-injury personality in the prediction of outcome following severe acquired brain injury. Brain Injury, 25(11), 10351046.Google Scholar
Cicone, M., Wapner, W., & Gardner, H. (1980). Sensitivity to emotional expressions and situations in organic patients. Cortex, 16, 145158.Google Scholar
Combs, D.R., Adams, S.D., Penn, D.L., Roberts, D., Tiegreen, J., & Stem, P. (2007). Social Cognition and Interaction Training (SCIT) for inpatients with schizophrenia spectrum disorders: Preliminary findings. Schizophrenia Research, 91(1-3), 112116.Google Scholar
Costafreda, S.G., Brammer, M.J., David, A.S., & Fu, C.H. (2008). Predictors of amygdala activation during the processing of emotional stimuli: A meta-analysis of 385 PET and fMRI studies. Brain Research Reviews, 58(1), 5770.Google Scholar
Croker, V., & McDonald, S. (2005). Recognition of emotion from facial expression following traumatic brain injury. Brain Injury, 19, 787789.Google Scholar
Cusi, A.M., Nazarov, A., Holshausen, K., MacQueen, G.M., & McKinnon, M.C. (2012). Systematic review of the neural basis of social cognition in patients with mood disorders. Journal of Psychiatry & Neuroscience, 37(3), 154169.Google Scholar
Damasio, A.R., Tranel, D., & Damasio, H. (1990). Individuals with sociopathic behavior caused by frontal damage fail to respond autonomically to social stimuli. Behavioural Brain Research, 41(2), 8194.Google Scholar
Damasio, A.R., Tranel, D., & Damasio, H.C. (1991). Somatic markers and the guidance of behavior: Theory and preliminary testing. In H.S. Levin, H.M. Eisenberg & A.L. Benton (Eds.), Frontal lobe function and dysfunction (pp 217229). NY, US: Oxford University Press.Google Scholar
Darwin, C. (1872). The expression of the emotions in man and animals. London, England: John Murray.Google Scholar
Davidson, R.J. (1984). Affect, cognition and hemispheric specialization. In C. E. Izard, J. Kagan & R. Zajonc (Eds.), Emotion, cognition and behavior (pp 320365). New York: Cambridge University Press.Google Scholar
Davidson, R.J., Pizzagalli, D., Nitschke, J.B., & Kalin, N.H. (2003). Parsing the subcomponents of emotion and disorders of emotion: Perspectives from affective neuroscience. In R.J. Davidson, K.R. Scherer & H.H. Goldsmith (Eds.), Handbook of affective sciences. Oxford: Oxford University Press.Google Scholar
Davis, J.I., Senghas, A., Brandt, F., & Ochsner, K.N. (2010). The effects of BOTOX injections on emotional experience. Emotion, 10(3), 433440.Google Scholar
de Sousa, A., McDonald, S., Rushby, J., Li, S., Dimoska, A., & James, C. (2011). Understanding deficits in empathy after traumatic brain injury: The role of affective responsivity. Cortex, 47(5), 526535.Google Scholar
De Winter, F.-L., Zhu, Q., Van den Stock, J., Nelissen, K., Peeters, R., de Gelder, B., & Vandenbulcke, M. (2015). Lateralization for dynamic facial expressions in human superior temporal sulcus. Neuroimage, 106, 340352.Google Scholar
Demark, J., & Gemeinhardt, M. (2002). Anger and it’s management for survivors of acquired brain injury. Brain Injury, 16(2), 91108.Google Scholar
Dethier, M., Blairy, S., Rosenberg, H., & McDonald, S. (2012). Spontaneous and posed emotional facial expressions following severe traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 34(9), 936947.Google Scholar
Dethier, M., Blairy, S., Rosenberg, H., & McDonald, S. (2013). Deficits in processing feedback from emotional behaviours following severe TBI. Journal of the International Neuropsychological Society, 19(4), 367379.Google Scholar
di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: a neurophysiological study. Experimental Brain Research, 91(1), 176180.Google Scholar
Dimberg, U., & Thunberg, M. (1998). Rapid facial reactions to emotional facial expressions. Scandinavian Journal of Psychology, 39, 3945.Google Scholar
Dimberg, U., Thunberg, M., & Elmehed, K. (2000). Unconscious facial reactions to emotional facial reactions. Psychological Science, 11, 8689.Google Scholar
Ekman, P., & Friesen, W.V. (1971). Constants across culture in the face and emotion. Journal of Personality and Social Psychology, 17, 124129.Google Scholar
Emery, N.A., & Amaral, D.G. (2000). The role of the amygdala in primate social cognition. In R. D. Lane & L. Nadel (Eds.), Cognitive neuroscience of emotion. Oxford: Oxford University Press.Google Scholar
Esteves, F., Dimberg, U., & Ohman, A. (1994). Automatically elicited fear: Conditioned skin conductance responses to masked facial expressions. Cognition & Emotion, 8(5), 393413.Google Scholar
Feinstein, J.S., Khalsa, S.S., Salomons, T.V., Prkachin, K.M., Frey-Law, L.A., Lee, J.E., & Rudrauf, D. (2016). Preserved emotional awareness of pain in a patient with extensive bilateral damage to the insula, anterior cingulate, and amygdala. Brain Structure & Function, 221, 14991511.Google Scholar
Fellows, L.K., & Farah, M.J. (2005). Different underlying impairments in decision-making following ventromedial and dorsolateral frontal lobe damage in humans. Cerebral Cortex, 15(1), 5863.Google Scholar
Fernie, G., & Tunney, R.J. (2013). Learning on the IGT follows emergence of knowledge but not differential somatic activity. Frontiers in Psychology, 4, 687.Google Scholar
Fett, A.K.J., Viechtbauer, W., Dominguez, M.D.G., Penn, D.L., van Os, J., & Krabbendam, L. (2011). The relationship between neurocognition and social cognition with functional outcomes in schizophrenia: A meta-analysis. Neuroscience and Biobehavioral Reviews, 35(3), 573588.Google Scholar
Fisher, A.C., Rushby, J.A., McDonald, S., Parks, N., & Piguet, O. (2015). Neurophysiological correlates of dysregulated emotional arousal in severe traumatic brain injury. Clinical Neurophysiology, 126(2), 314324.Google Scholar
Fox, N.A., Bakermans-Kranenburg, M.J., Yoo, K.H., Bowman, L.C., Cannon, E.N., Vanderwert, R.E., & van Ijzendoorn, M.H. (2016). Assessing human mirror activity with EEG mu right hemisphereythm: A meta-analysis. Psychological Bulletin, 142(3), 291313.CrossRefGoogle Scholar
Francis, H.M., Fisher, A., Rushby, J.A., & McDonald, S. (2016). Reduced heart rate variability in chronic severe traumatic brain injury: Association with impaired emotional and social functioning, and potential for treatment using biofeedback. Neuropsychological Rehabilitation, 26(1), 103125.Google Scholar
Funayama, E.S., Grillon, C., Davis, M., & Phelps, E.A. (2001). A double dissociation in the affective modulation of startle in humans: effects of unilateral temporal lobectomy. Journal of Cognitive Neuroscience, 13(6), 721729.Google Scholar
Gainotti, G. (1972). Emotional behavior and hemispheric side of the lesion. Cortex, 8, 4155.Google Scholar
Gazzola, V., Aziz-Zadeh, L., & Keysers, C. (2006). Empathy and the somatotopic auditory mirror system in humans. Current Biology, 16(18), 18241829.Google Scholar
Golden, W.L., & Consorte, J. (1982). Training mildly retarded individuals to control their anger through the use of cognitive-behavior therapy techniques. Journal of Contemporary Psychotherapy, 13(2), 182187.Google Scholar
Grafman, J., Schwab, K., Warden, D., Pridgen, A., Brown, H.R., & Salazar, A.M. (1996). Frontal lobe injuries, violence, and aggression: A report of the Vietnam Head Injury Study. Neurology, 46(5), 12311238.Google Scholar
Green, M.J., Cahill, C.M., & Malhi, G.S. (2007). The cognitive and neurophysiological basis of emotion dysregulation in bipolar disorder. Journal of Affective Disorders, 103(1-3), 2942.Google Scholar
Grèzes, J., & Decety, J. (2001). Functional anatomy of execution, mental simulation, observation, and verb generation of actions: A meta-analysis. Human Brain Mapping, 12(1), 119.Google Scholar
Guillaume, S., Jollant, F., Jaussent, I., Lawrence, N., Malafosse, A., & Courtet, P. (2009). Somatic markers and explicit knowledge are both involved in decision-making. Neuropsychologia, 47(10), 21202124.Google Scholar
Gutbrod, K., Krouzel, C., Hofer, H., Muri, R., Perrig, W., & Ptak, R. (2006). Decision-making in amnesia: Do advantageous decisions require conscious knowledge of previous behavioural choices? Neuropsychologia, 44(8), 13151324.Google Scholar
Hariri, A.R., Bookheimer, S.Y., & Mazziotta, J.C. (2000). Modulating emotional responses: Effects of a neocortical network on the limbic system. Neuroreport, 11(1), 4348.Google Scholar
Hazelton, J.L., Irish, M., Hodges, J.R., Piguet, O., & Kumfor, F. (2016). Cognitive and affective empathy disruption in non-fluent primary progressive aphasia syndromes. Brain Impairment, 113. doi: 10.1017/BrImp.2016.21 Google Scholar
Heilman, K.M., Bowers, D., & Valenstein, E. (1985). Emotional disorders associated with neurological diseases. In K. Heilman & E. Valenstein (Eds.), Clinical neuropsychology (pp 377402). New York: Oxford University Press.Google Scholar
Heilman, K.M., Scholes, R., & Watson, R. (1975). Auditory affective agnosia: Disturbed comprehension of affective speech. Journal of Neurology, Neurosurgery, & Psychiatry, 38, 6972.Google Scholar
Heims, H., Critchley, H., Dolan, R., Mathias, C., & Cipolotti, L. (2004). Social and motivational functioning is not critically dependent on feedback of autonomic responses: Neuropsychological evidence from patients with pure autonomic failure. Neuropsychologia, 42(14), 19791988.Google Scholar
Heller, W., & Levy, J. (1981). Perception and expression of emotion in right-handers and left-handers. Neuropsychologia, 19(2), 263272. doi: https://doi.org/10.1016/0028-3932(81)90110-X Google Scholar
Hess, U., & Blairy, S. (2001). Facial mimicry and emotional contagion to dynamic emotional facial expressions and their influence on decoding accuracy. International Journal of Psychophysiology, 40(2), 129141.CrossRefGoogle ScholarPubMed
Hinson, J.M., Jameson, T.L., & Whitney, P. (2002). Somatic markers, working memory, and decision making. Cognitive, Affective, & Behavioral Neuroscience, 2, 341353.Google Scholar
Hoffman, M.L. (1984). Interaction of affect and cognition on empathy. In P. Phillippot, R. Feldman & E. Coats (Eds.), The social context of nonverbal behaviour (pp 103131). Cambridge: Cambridge University Press.Google Scholar
Honan, C.A., McDonald, S., Sufani, C., Hine, D.W., & Kumfor, F. (2016). The awareness of social inference test: Development of a shortened version for use in adults with acquired brain injury. Clinical Neuropsychologist, 30(2), 243264.Google Scholar
Honan, C.A., McDonald, S., Tate, R.L., Ownsworth, T., Fleming, J., Anderson, V., & Ponsford, J. (in press). Outcome instruments in moderate-to-severe traumatic brain injury: Recommendations for use in psychosocial research. Neuropsychological Rehabilitation.Google Scholar
Hopkins, M.J., Dywan, J., & Segalowitz, S.J. (2002). Altered electrodermal response to facial expression after closed head injury. Brain Injury, 16, 245257.Google Scholar
Horan, W.P., Kern, R.S., Green, M.F., & Penn, D.L. (2008). Social cognition training for individuals with schizophrenia: Emerging evidence. American Journal of Psychiatric Rehabilitation, 11(3), 205252.Google Scholar
Hornak, J., Rolls, E.T., & Wade, D. (1996). Face and voice expression identification in patients with emotional and behavioural changes following ventral frontal lobe damage. Neuropsychologia, 34(4), 247261.Google Scholar
Iacoboni, M. (2009). Imitation, empathy, and mirror neurons. Annual Review of Psychology, 60(1), 653670.Google Scholar
Irani, F., Seligman, S., Kamath, V., Kohler, C., & Gur, R.C. (2012). A meta-analysis of emotion perception and functional outcomes in schizophrenia. Schizophrenia Research, 137(1-3), 203211.Google Scholar
Izard, C.E. (1971). The face of emotion (Vol. xii). CT: Appleton-Century-Crofts.Google Scholar
Jackson, P.L., Rainville, P., & Decety, J. (2006). To what extent do we share the pain of others? Insight from the neural bases of pain empathy. Pain, 125(1-2), 59.Google Scholar
Jacobson, L., Javitt, D.C., & Lavidor, M. (2011). Activation of inhibition: diminishing impulsive behavior by direct current stimulation over the inferior frontal gyrus. Journal of Cognitive Neuroscience, 23(11), 33803387.Google Scholar
Kamminga, J., Kumfor, F., Burrell, J.R., Piguet, O., Hodges, J.R., & Irish, M. (2015). Differentiating between right-lateralised semantic dementia and behavioural-variant frontotemporal dementia: An examination of clinical characteristics and emotion processing. Journal of Neurology, Neurosurgery, & Psychiatry, 86(10), 10821088.Google Scholar
Kant, R., Duffy, J.D., & Pivovarnik, A. (1998). Prevalence of apathy following head injury. Brain Injury, 12(1), 8792.Google Scholar
Keightly, M.L., Winocur, G., Graham, S.J., Matyberg, H.S., Hevenor, S.J., & Grady, C.L. (2003). An fMRI study investigating cognitive modulation of brain regions associated with emotional processing of visual stimuli. Neuropsychologia, 41, 585596.Google Scholar
Kelly, M., McDonald, S., & Frith, M.H.J. (2017). Assessment and rehabilitation of social cognition impairment after brain injury: Surveying practices of clinicians. Brain Impairment, 18(1), 1135.Google Scholar
Kelly, M.P., McDonald, S.P., & Frith, M.H.J. (in press). A survey of clinicians working in brain injury rehabilitation: Are social cognition impairments on the radar? Journal of Head Trauma Rehabilitation.Google Scholar
Kern, R.S., Nuechterlein, K.H., Green, M.F., Baade, L.E., Fenton, W.S., Gold, J.M., & Marder, S.R. (2008). The MATRICS Consensus Cognitive Battery, Part 2: Co-norming and standardization. American Journal of Psychiatry, 165(2), 214220.Google Scholar
Kinsella, G., Packer, S., & Olver, J. (1991). Maternal reporting of behaviour following very severe blunt head injury. Journal of Neurology, Neurosurgery, & Psychiatry, 54(5), 422426.Google Scholar
Kohler, C.G., Walker, J.B., Martin, E.A., Healey, K.M., & Moberg, P.J. (2010). Facial emotion perception in schizophrenia: A meta-analytic review. Schizophrenia Bulletin, 36(5), 10091019.Google Scholar
Korkman, M., Kirk, U., & Kemp, S. (2007). NEPSY- second edition. New York: Pearson Assessment.Google Scholar
Kumfor, F., Landin-Romero, R., Devenney, E., Hutchings, R., Grasso, R., Hodges, J.R., & Piguet, O. (2016). On the right side? A longitudinal study of left-versus right-lateralized semantic dementia. Brain, 139(3), 986998. doi: 10.1093/brain/awv387 Google Scholar
Kuehn, E., Mueller, K., Turner, R., & Schutz-Bosbach, S. (2014). The functional architecture of S1 during touch observation described with 7 T fMRI. Brain Structure & Function, 219(1), 119140.Google Scholar
Kurtz, M.M., & Richardson, C.L. (2012). Social cognitive training for schizophrenia: A meta-analytic investigation of controlled research. Schizophrenia Bulletin, 38(5), 10921104.Google Scholar
Landin-Romero, R., Tan, R., Hodges, J.R., & Kumfor, F. (2016). An update on semantic dementia: Genetics, imaging, and pathology. Alzheimer’s Research & Therapy, 8(1), 52.Google Scholar
Langner, R., & Eickhoff, S.B. (2013). Sustaining attention to simple tasks: A meta-analytic review of the neural mechanisms of vigilant attention. Psychological Bulletin, 139(4), 870900.Google Scholar
LeDoux, J. (1995). Emotions: Clues from the brain. Annual Reviews: Psychology, 46, 209235.Google Scholar
Levine, B., Black, S.E., Cheung, G., Campbell, A., O’Toole, C., & Schwartz, M.L. (2005). Gambling task performance in traumatic brain injury: relationships to injury severity, atrophy, lesion location, and cognitive and psychosocial outcome. Cognitive and Behavioral Neurology, 18(1), 4554.Google Scholar
Ley, R.G., & Bryden, M.P. (1979). Hemispheric differences in processing emotions and faces. Brain and Language, 7(1), 127138.Google Scholar
Lieberman, M.D. (2007). Social cognitive neuroscience: A review of core processes. Annual Review of Psychology, 58, 259289.Google Scholar
Lindquist, K.A., Wager, T.D., Kober, H., Bliss-Moreau, E., & Barrett, L.F. (2012). The brain basis of emotion: A meta-analytic review. Behavioral and Brain Sciences, 35(3), 121143.Google Scholar
Loo, C.K., Alonzo, A., Martin, D., Mitchell, P.B., Galvez, V., & Sachdev, P. (2012). Transcranial direct current stimulation for depression: 3-week, randomised, sham-controlled trial. British Journal of Psychiatry, 200(1), 5259.Google Scholar
Luria, A.R. (1973). The working brain. London: Allen Lane: The Penguin Press.Google Scholar
McDonald, S. (2012). New frontiers in neuropsychological assessment: Assessing social perception using a standardised instrument, the Awareness of Social Inference Test. Australian Psychologist, 47(1), 3948.Google Scholar
McDonald, S., Fisher, A., Togher, L., Tate, R., Rushby, J., English, T., & Francis, H. (2015). Adolescent performance on The Awareness of Social Inference Test: TASIT. Brain Impairment, 16(1), 318.CrossRefGoogle Scholar
McDonald, S., Flanagan, S., Martin, I., & Saunders, C. (2004). The ecological validity of TASIT: A test of social perception. Neuropsychological Rehabilitation, 14, 285302.Google Scholar
McDonald, S., Flanagan, S., & Rollins, J. (2011). The Awareness of Social Inference Test (Revised). Sydney, Australia: Pearson Assessment.Google Scholar
McDonald, S., Flanagan, S., Rollins, J., & Kinch, J. (2003). TASIT: A new clinical tool for assessing social perception after traumatic brain injury. Journal of Head Trauma Rehabilitation, 18, 219238.Google Scholar
McDonald, S., Li, S., De Sousa, A., Rushby, J., Dimoska, A., James, C., & Tate, R.L. (2011). Impaired mimicry response to angry faces following severe traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 33(1), 1729.Google Scholar
McDonald, S., Rushby, J., Li, S., de Sousa, A., Dimoska, A., James, C., & Togher, L. (2011). The influence of attention and arousal on emotion perception in adults with severe traumatic brain injury. International Journal of Psychophysiology, 82(1), 124131.Google Scholar
Mitchell, R.L.C., & Phillips, L.H. (2015). The overlapping relationship between emotion perception and theory of mind. Neuropsychologia, 70, 110.CrossRefGoogle ScholarPubMed
Molenberghs, P., Cunnington, R., & Mattingley, J.B. (2012). Brain regions with mirror properties: A meta-analysis of 125 human fMRI studies. Neuroscience and Biobehavioral Reviews, 36(1), 341349.Google Scholar
Molenberghs, P., Johnson, H., Henry, J.D., & Mattingley, J.B. (2016). Understanding the minds of others: A neuroimaging meta-analysis. Neuroscience and Biobehavioral Reviews, 65, 276291.Google Scholar
Morris, J.S., DeGelder, B., Weiskrantz, L., & Dolan, R.J. (2001). Differential extrageniculostriate and amygdala responses to presentation of emotional faces in a cortically blind field. Brain, 124(6), 12411252.Google Scholar
Morris, J.S., Frith, C.D., Perrett, D.I., Rowland, D., Young, A.W., Calder, A.J., & Dolan, R.J. (1996). A differential neural response in the human amygdala to fearful and happy facial expressions. Nature, 383(6603), 812815.Google Scholar
Mukamel, R., Ekstrom, A.D., Kaplan, J.T., Iacoboni, M., & Fried, I. (2010). Single-neuron responses in humans during execution and observation of actions. Current Biology, 20, 750756.Google Scholar
Naccache, L., Dehaene, S., Cohen, L., Habert, M.-O., Guichart-Gomez, E., Galanaud, D., & Willer, J.-C. (2005). Effortless control: Executive attention and conscious feeling of mental effort are dissociable. Neuropsychologia, 43(9), 13181328.Google Scholar
Niedenthal, P.M., Brauer, M., Halberstadt, J.B., & Innes-Ker, Å.H. (2001). When did her smile drop? Facial mimicry and the influences of emotional state on the detection of change in emotional expression. Cognition & Emotion, 15(6), 853864.Google Scholar
Nowicki, S. (2010). Manual for the receptive tests of the Diagnostic Analysis of Nonverbal Accuracy 2 (DANVA2). Atlanta, GA: Available from Dr Stephen Nowicki, Jr., Department of Psychology, Emory University, email: [email protected].Google Scholar
Nuechterlein, K.H., Green, M.F., Kern, R.S., Baade, L.E., Barch, D.M., Cohen, J.D., & Marder, S.R. (2008). The MATRICS Consensus Cognitive Battery, Part 1: Test selection, reliability, and validity. American Journal of Psychiatry, 165(2), 203213.Google Scholar
Ohman, A., & Soares, J.J.F. (1994). “Unconscious anxiety”: Phobic responses to masked stimuli. Journal of Abnormal Psychology, 103(2), 231240.Google Scholar
Park, S., Matthews, N., & Gibson, C. (2008). Imitation, simulation, and schizophrenia. Schizophrenia Bulletin, 34(4), 698707.Google Scholar
Penn, D.L., Corrigan, P.W., Bentall, R.P., Racenstein, J.M., & Newman, L. (1997). Social cognition in schizophrenia. Psychological Bulletin, 121, 114132.Google Scholar
Pfeifer, J.H., Iacoboni, M., Mazziotta, J.C., & Dapretto, M. (2008). Mirroring others’ emotions relates to empathy and interpersonal competence in children. Neuroimage, 39(4), 20762085.Google Scholar
Phillips, M.L. (2003). Understanding the neurobiology of emotion perception: Implications for psychiatry. British Journal of Psychiatry, 182(3), 190192.Google Scholar
Phillips, M.L., Drevets, W.C., Rauch, S.L., & Lane, R. (2003). Neurobiology of emotion perception I: The neural basis of normal emotion perception. Society of Biological Psychiatry, 54, 504514.Google Scholar
Pistoia, F., Conson, M., Trojano, L., Grossi, D., Ponari, M., Colonnese, C., & Sara, M. (2010). Impaired conscious recognition of negative facial expressions in patients with locked-in syndrome. The Journal of Neuroscience, 30(23), 78387844.Google Scholar
Price, C.J. (2012). A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. NeuroImage, 62, 816847.Google Scholar
Raz, G., Jacob, Y., Gonen, T., Winetraub, Y., Flash, T., Soreq, E., & Hendler, T. (2013). Cry for her or cry with her: context-dependent dissociation of two modes of cinematic empathy reflected in network cohesion dynamics. Social Cognitive and Affective Neuroscience, 9(1), 3038.Google Scholar
Reuter-Lorenz, P., & Davidson, R.J. (1981). Differential contributions of the two cerebral hemispheres to the perception of happy and sad faces. Neuropsychologia, 19, 609613.Google Scholar
Reynders, H.J., Broks, P., Dickson, J.M., Lee, C.E., & Turpin, G. (2005). Investigation of social and emotion information processing in temporal lobe epilepsy with ictal fear. Epilepsy & Behavior, 7(3), 419429.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Brain Research Cognitive Brain Research, 3(2), 131141.CrossRefGoogle ScholarPubMed
Rizzolatti, G., & Sinigaglia, C. (2010). The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nature Reviews Neuroscience, 11(4), 264274.Google Scholar
Roelofs, R.L., Wingbermühle, E., Egger, J.I.M., & Kessels, R.P.C. (2017). Social cognitive interventions in neuropsychiatric patients: A meta-analysis. Brain Impairment, 18(1), 138173.Google Scholar
Rolls, E.T. (2000). Memory systems in the brain. Annual Review of Psychology, 51, 599630.Google Scholar
Rosenberg, H., McDonald, S., Rosenberg, J., & Westbrook, R.F. (2016). Measuring emotion perception following traumatic brain injury: The Complex Audio Visual Emotion Assessment Task (CAVEAT). Neuropsychological Rehabilitation, 119.Google Scholar
Ross, E.D. (1981). The aprosodias: Functional-anatomic organisation of the affective components of language in the right hemisphere. Archives of Neurology, 38, 561569.Google Scholar
Ross, E.D., & Mesulam, M.-M. (1979). Dominant language functions of the right hemisphere? Prosody and emotional gesturing. Archives of Neurology, 36(3), 144148.Google Scholar
Sackeim, H.A., Greenberg, M.S., Weiman, A.L., Gur, R.C., Hungerbuhler, J.P., & Geschwind, N. (1982). Hemispheric asymmetry in the expression of positive and negative emotions. Archives of Neurology, 39, 210218.Google Scholar
Savla, G.N., Vella, L., Armstrong, C.C., Penn, D.L., & Twamley, E.W. (2013). Deficits in domains of social cognition in schizophrenia: A meta-analysis of the empirical evidence. Schizophrenia Bulletin, 39(5), 979992.Google Scholar
Satpute, A.B., Kang, J., Bickart, K.C., Yardley, H., Wager, T.D., & Barrett, L.F. (2015). Involvement of sensory regions in affective experience: A meta-analysis. Frontiers in Psychology, 6, 1860.Google Scholar
Saunders, J.C., McDonald, S., & Richardson, R. (2006). Loss of emotional experience after traumatic brain injury: Findings with the startle probe procedure. Neuropsychology, 20(2), 224231.Google Scholar
Schaefer, M., Heinze, H.-J., & Rotte, M. (2012). Embodied empathy for tactile events: Interindividual differences and vicarious somatosensory responses during touch observation. Neuroimage, 60(2), 952957.Google Scholar
Scott, S.K., Young, A.W., Calder, A.J., Hellawell, D.J., Aggleton, J.P., & Johnson, M. (1997). Impaired auditory recognition of fear and anger following bilateral amygdala lesions. Nature, 385(6613), 254257.Google Scholar
Sergerie, K., Chochol, C., & Armony, J.L. (2008). The role of the amygdala in emotional processing: A quantitative meta-analysis of functional neuroimaging studies. Neuroscience & Biobehavioral Reviews, 32(4), 811830.Google Scholar
Shamay-Tsoory, S.G., Tomer, R., Berger, B.D., Goldsher, D., & Aharon-Peretz, J. (2005). Impaired “affective theory of mind” is associated with right ventromedial prefrontal damage. Cognitive and Behavioral Neurology, 18(1), 5567.Google Scholar
Shimokawa, A., Yatomi, N., Anamizu, S., Torii, S., Isono, H., Sugai, Y., & Kohno, M. (2001). Influence of deteriorating ability of emotional comprehension on interpersonal behavior in Alzheimer-type dementia. Brain and Cognition, 47(3), 423433.Google Scholar
Silberman, E.K., & Weingartner, H. (1986). Hemispheric lateralization of functions related to emotion. Brain and Cognition, 5(3), 322353.Google Scholar
Sonnby-Borgström, M., Jönsson, P., & Svensson, O. (2003). Emotional empathy as related to mimicry reactions at different levels of information processing. Journal of Nonverbal Behavior, 27(1), 323.Google Scholar
Spikman, J.M., Milders, M.V., Visser-Keizer, A.C., Westerhof-Evers, H.J., Herben-Dekker, M., & van der Naalt, J. (2013). Deficits in facial emotion recognition indicate behavioral changes and impaired self-awareness after moderate to severe traumatic brain injury. PLoS One, 8(6), e65581. doi: 10.1371/journal.pone.0065581 Google Scholar
Spikman, J.M., Timmerman, M.E., Milders, M.V., Veenstra, W.S., & van der Naalt, J. (2012). Social cognition impairments in relation to general cognitive deficits, injury severity, and prefrontal lesions in traumatic brain injury patients. Journal of Neurotrauma, 29(1), 101111.Google Scholar
Sprengelmeyer, R., Young, A.W., Calder, A.J., Karnat, A., Lange, H., Homber, G.V., & Rowland, D. (1996). Loss of disgust: Perception of faces and emotions in Huntington’s disease. Brain: A Journal of Neurology, 119(5), 16471665.Google Scholar
Stuss, D.T., & Benson, D.F. (1986). The frontal lobes. New York: Raven Press.Google Scholar
Toplak, M.E., Sorge, G.B., Benoit, A., West, R.F., & Stanovich, K.E. (2010). Decision-making and cognitive abilities: A review of associations between Iowa Gambling Task performance, executive functions, and intelligence. Clinical Psychology Review, 30(5), 562581.Google Scholar
Wapner, W., Hamby, S., & Gardner, H. (1981). The role of the right hemisphere in the apprehension of complex linguistic materials. Brain and Language, 14, 1532.Google Scholar
Wechsler, D. (2009). Advanced clinical solutions for WAIS-IV and WMS-IV: Administration and scoring manual. San Antonio, TX: Pearson Assessment.Google Scholar
Weinstein, E.A., & Kahn, R.C. (1955). Denial of illness: Symbolic and physiologic aspects. Springfield IL: Thomas.Google Scholar
Wiig, E., & Secord, W. (2014). Clinical evaluation of language fundamentals. USA: Pearson Assessment.Google Scholar
Wilde, E.A., Whiteneck, G.G., Bogner, J., Bushnik, T., Cifu, D.X., Dikmen, S., & von Steinbuechel, N. (2010). Recommendations for the use of common outcome measures in traumatic brain injury research. Archives of Physical Medicine and Rehabilitation, 91(11), 16501660.e1617.Google Scholar
Williams, C., & Wood, R.L. (2010). Alexithymia and emotional empathy following traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 32(3), 259267.Google Scholar
Williams, C., & Wood, R.L. (2012). Affective modulation of the startle reflex following traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 34(9), 948961.Google Scholar
Wood, R.L., & Williams, C. (2008). Inability to empathize following traumatic brain injury. Journal of the International Neuropsychological Society, 14, 289296.Google Scholar
Yeates, K.O., Swift, E., Taylor, H.G., Wade, S.L., Drotar, D., Stancin, T., & Minich, N. (2004). Short- and long-term social outcomes following pediatric traumatic brain injury. Journal of the International Neuropsychological Society, 10(3), 412426.Google Scholar