Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T20:23:04.991Z Has data issue: false hasContentIssue false

Domain-Specific Cognitive Recovery after First-Ever Stroke: A 2-Year Follow-Up

Published online by Cambridge University Press:  09 August 2017

Katri E.A. Turunen*
Affiliation:
Department of Psychology, Faculty of Medicine, University of Helsinki, Finland Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Finland
Siiri P.K. Laari
Affiliation:
Department of Psychology, Faculty of Medicine, University of Helsinki, Finland Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Finland
Tatu V. Kauranen
Affiliation:
Department of Neurology and Clinical Neurophysiology, Lapland Central Hospital, Rovaniemi, Finland
Jenni Uimonen
Affiliation:
Rehabilitation services, City of Espoo, Finland
Satu Mustanoja
Affiliation:
Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Finland
Turgut Tatlisumak
Affiliation:
Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Finland Department of Clinical Neurosciences, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden and Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
Erja Poutiainen
Affiliation:
Department of Psychology, Faculty of Medicine, University of Helsinki, Finland Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Finland Rehabilitation Foundation, Helsinki, Finland
*
Correspondence and reprint requests to: Katri Turunen, Department of Psychology, Faculty of Medicine, P.O. Box 9, FI-00014 University of Helsinki, Helsinki, Finland. E-mail: [email protected]

Abstract

Objectives: The aim of this work was to study the change in different cognitive domains after stroke during a 2-year follow-up. Method: We evaluated both neuropsychologically and neurologically a consecutive cohort of working-age patients with a first-ever stroke at baseline (within the first weeks), 6 months, and 2 years after stroke-onset. A total of 153 patients participated in all examinations and were compared to 50 healthy controls. Results: Forty-nine percent of the patients were cognitively impaired at baseline, 41% at 6 months, and 39% at 2-year follow-up. We analyzed seven cognitive domains (impairment rates at baseline and 2-year follow-up): psychomotor speed (34%; 23%), executive functions (27%; 17%), visual memory (21%; 4%), visuospatial function (20%; 14%), verbal memory (18%; 12%), basic language processing (baseline 11%; 6 months 5%), and reasoning (2 years 14%). The patients who were cognitively impaired at baseline improved more within 6 months, than either the controls or cognitively intact patients in all cognitive domains (all p<.05). Later on, between 6 months and 2 years, the domain-specific change scores did not differ between patients who were cognitively intact and impaired at 6 months. Also, the cognitive status (intact or impaired) remained the same in 90% of patients between 6-month and 2-year follow-ups. At 2 years, half of the patients, who were categorized cognitively impaired, were rated as well-recovered according to neurological evaluation. Conclusions: Most of the cognitive improvement took place within 6 months. Long-lasting cognitive impairment was common even after good neurological recovery. An early neuropsychological examination is essential in evaluating cognitive dysfunction and need for rehabilitation. (JINS, 2018, 24, 117–127)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aalto, M., Tuunanen, M., Sillanaukee, P., & Seppä, K. (2006). Effectiveness of structured questionnaires for screening heavy drinking in middle-aged women. Alcoholism: Clinical and Experimental Research, 30, 18841888. doi: 10.1111/j.1530-0277.2006.00233.x Google Scholar
Adams, H.P., Bendixen, B.H., Kappelle, L.J., Biller, J., Love, B.B., Gordon, D.L., &&Marsh, E.E. (1993). Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of org 10172 in acute stroke treatment. Stroke, 24, 3541. doi: 10.1161/01.STR.24.1.35 Google Scholar
Barker-Collo, S., Starkey, N., Lawes, C.M.M., Feigin, V., Senior, H., & Parag, V. (2012). Neuropsychological profiles of 5-year ischemic stroke survivors by Oxfordshire stroke classification and hemisphere of lesion. Stroke, 43, 5055. doi: 10.1161/STROKEAHA.111.627182 Google Scholar
Benton, A.L. (1974). Revised visual retention test (4th ed.). New York: Psychological Corporation.Google Scholar
Bour, A., Rasquin, S., Boreas, A., Limburg, M., & Verhey, F. (2010). How predictive is the MMSE for cognitive performance after stroke? Journal of Neurology, 257, 630637. doi: 10.1007/s00415-009-5387-9 Google Scholar
Brott, T., Adams, H.P., Olinger, C.P., Marler, J.R., Barsan, W.G., Biller, J., & Hertzberg, V. (1989). Measurements of acute cerebral infarction: A clinical examination scale. Stroke, 20, 864870.Google Scholar
Christensen, A. (1979). Luria’s neuropsychological investigation: Text (2nd ed.). Copenhagen: Munksgaard.Google Scholar
Daniel, K., Wolfe, C.D., Busch, M.A., & McKevitt, C. (2009). What are the social consequences of stroke for working-aged adults?. Stroke, 40, e431e440. doi: 10.1161/STROKEAHA.108.534487 Google Scholar
De Renzi, E., & Faglioni, P. (1978). Normative data and screening power of a shortened version of the Token test. Cortex, 14, 4149.Google Scholar
Goldstein, L.B., Bertels, C., & Davis, J.N. (1989). Interrater reliability of the NIH stroke scale. Archives of Neurology, 46, 660662. doi: 10.1001/archneur.1989.00520420080026 CrossRefGoogle ScholarPubMed
Goodglass, H., & Kaplan, E. (1983). Assessment of aphasia and related disorders (2nd ed.). Philadelphia: Lea and Febiger.Google Scholar
Gottesman, R.F., & Hillis, A.E. (2010). Predictors and assessment of cognitive dysfunction resulting from ischaemic stroke. Lancet Neurology, 9, 895905.Google Scholar
Hochstenbach, J.B., den Otter, R., & Mulder, T.W. (2003). Cognitive recovery after stroke: A 2-year follow-up. Archives of Physical Medicine and Rehabilitation, 84, 14991504. doi: 10.1016/S0003-9993(03)00370-8 Google Scholar
Hurford, R., Charidimou, A., Fox, Z., Cipolotti, L., & Werring, D.J. (2013). Domain-specific trends in cognitive impairment after acute ischaemic stroke. Journal of Neurology, 260, 237241. doi: 10.1007/s00415-012-6625-0 Google Scholar
Jaillard, A., Naegele, B., Trabucco-Miguel, S., LeBas, J.F., & Hommel, M. (2009). Hidden dysfunctioning in subacute stroke. Stroke, 40, 24732479. doi: 10.1161/STROKEAHA.108.541144 Google Scholar
Jokinen, H., Melkas, S., Ylikoski, R., Pohjasvaara, T., Kaste, M., Erkinjuntti, T., &&Hietanen, M. (2015). Post-stroke cognitive impairment is common even after successful clinical recovery. European Journal of Neurology, 22, 12881294. doi: 10.1111/ene.12743 Google Scholar
Kauhanen, M.-L., Korpelainen, J.T., Hiltunen, P., Brusin, E., Mononen, H., Määttä, R., & Myllylä, V.V. (1999). Poststroke depression correlates with cognitive impairment and neurological deficits. Stroke, 30, 18751880. doi: 10.1161/01.STR.30.9.1875 Google Scholar
Kauranen, T., Laari, S., Turunen, K., Melkas, M., Mustanoja, S., Baumann, P., &&Poutiainen, E. (2015). Use of stroke-related income supplements and predictors of use in a working-aged Finnish ischemic stroke cohort. Journal of Stroke and Cerebrovascular Diseases, 24, 17151723. doi: 10.1016/j.jstrokecerebrovasdis.2015.03.049 Google Scholar
Kauranen, T., Laari, S., Turunen, K., Mustanoja, S., Baumann, P., & Poutiainen, E. (2014). The cognitive burden of stroke emerges even with an intact NIH stroke scale score: A cohort study. Journal of Neurology, Neurosurgery, & Psychiatry, 85, 295299. doi: 10.1136/jnnp-2013-305585 Google Scholar
Kauranen, T., Turunen, K., Laari, S., Mustanoja, S., Baumann, P., & Poutiainen, E. (2013). The severity of cognitive deficits predicts return to work after a first-ever ischaemic stroke. Journal of Neurology, Neurosurgery, & Psychiatry, 84, 316321. doi: 10.1136/jnnp-2012-302629 Google Scholar
Kivisaari, S., & Poutiainen, E. (Eds.). (2008). Bentonin visuaalisen muistitestin C-version suomalainen viitearvoaineisto. Suomen Neuropsykologinen Yhdistys ry. [Finnish normative data for Benton revised visual retention test. Finnish Neuropsychological Society.] Helsinki: Online-publication.Google Scholar
Laine, M., Niemi, J., Koivuselkä-Sallinen, P., & Tuomainen, J. (1997). Bostonin diagnostinen afasiatesti [The standardised Finnish version of the Boston diagnostic aphasia examination]. Helsinki: Psykologien Kustannus Oy.Google Scholar
Lezak, M.D., Howieson, D.B., Bigler, E.D., & Tranel, D. (2012). Neuropsychological assessment (5th ed.). New York: Oxford University Press.Google Scholar
Mahoney, F.I., & Barthel, D.W. (1965). Functional evaluation: The Barthel index. Maryland State Medical Journal, 14, 5661.Google Scholar
McNair, D.M., & Lorr, M. (1964). An analysis of mood in neurotics. Journal of Abnormal and Social Psychology, 69, 620627.Google Scholar
Nys, G.M.S., van Zandvoort, M.J.E., de Kort, P.L.M., Jansen, B.P.W., Kappelle, L.J., & de Haan, E.H.F. (2005). Restrictions of the Mini-Mental State Examination in acute stroke. Archives of Clinical Neuropsychology, 20, 623629.Google Scholar
Nys, G.M.S., van Zandvoort, M.J.E., de Kort, P.L.M., van der Worp, H.B., Jansen, B.P.W., Algra, A., & Kappelle, L.J. (2005). The prognostic value of domain-specific cognitive abilities in acute first-ever stroke. Neurology, 64, 821827.Google Scholar
Nys, G.M.S., van Zandvoort, M.J.E., van der Worp, H.B., de Haan, E.H.F., de Kort, P.L.M., Jansen, B.P.W., &&Kappelle, L.J. (2006). Early cognitive impairment predicts long-term depressive symptoms and quality of life after stroke. Journal of the Neurological Sciences, 247, 149156.Google Scholar
Nys, G.M.S., van Zandvoort, M.J.E., de Kort, P.L.M., Jansen, B.P.V., de Haan, E.H.F., & Kappelle, L.J. (2007). Cognitive disorders in acute stroke: Prevalence and clinical determinants. Cerebrovascular Diseases, 23, 408416.CrossRefGoogle ScholarPubMed
Nys, G.M.S., Van Zandvoort, M.J.E., De Kort, P.L.M., Jansen, B.P.W., Van Der Worp, H.B., Kappelle, L.J., &&De Haan, E.H.F. (2005). Domain-specific cognitive recovery after first-ever stroke: A follow-up study of 111 cases. Journal of the International Neuropsychological Society, 11, 795806. doi: 10.10170S1355617705050952 Google Scholar
Pihlaja, R., Uimonen, J., Mustanoja, S., Tatlisumak, T., & Poutiainen, E. (2014). Post-stroke fatigue is associated with impaired processing speed and memory functions in first-ever stroke patients. Journal of Psychosomatic Research, 77, 380384. doi: 10.1016/j.jpsychores.2014.08.011 Google Scholar
Poutiainen, E., Kalska, H., Laasonen, M., Närhi, V., & Räsänen, P. (Eds.). (2010). Trail-making –testi. Käsikirja. [The Trail-Making Test. A Finnish manual.]. Helsinki: Psykologien Kustannus Oy.Google Scholar
Rasquin, S.M.C., Lodder, J., Ponds, R.W.H.M., Winkens, I., Jolles, J., & Verhey, F.R.J. (2004). Cognitive functioning after stroke: A one-year follow-up study. Dementia and Geriatric Cognitive Disorders, 18, 138144.Google Scholar
Rasquin, S.M.C., Verhey, F.R.J., Lousberg, R., Winkens, I., & Lodder, J. (2002). Vascular cognitive disorders: Memory, mental speed and cognitive flexibility after stroke. Journal of the Neurological Sciences, 203–204, 115119. doi: 10.1016/S0022-510X(02)00264-2 Google Scholar
Reitan, R.M. (1958). Validity of the Trail Making test as an indicator of organic brain damage. Perceptual and Motor Skills, 8, 271276.Google Scholar
Sachdev, P.S., Brodaty, H., Valenzuela, M.J., Lorenz, L., & Koschera, A. (2004). Progression of cognitive impairment in stroke patients. Neurology, 63, 16181623.Google Scholar
Schaapsmeerders, P., Maaijwee, N.A.M., van Dijk, E.J., Rutten-Jacobs, L.C.A., Arntz, R.M., Schoonderwaldt, H.C., & de Leeuw, F.-E. (2013). Long-term cognitive impairment after first-ever ischemic stroke in young adults. Stroke, 44, 16211628. doi: 10.1161/STROKEAHA.111.000792 Google Scholar
Turunen, K.E.A., Kauranen, T.V., Laari, S.P.K., Mustanoja, S.M., Tatlisumak, T., & Poutiainen, E.T. (2013). Cognitive deficits after subcortical infarction are comparable with deficits after cortical infarction. European Journal of Neurology, 20, 286292. doi: 10.1111/j.1468-1331.2012.03844.x Google Scholar
Turunen, K.E.A., Laari, S.P.K., Kauranen, T.V., Mustanoja, S., Tatlisumak, T., & Poutiainen, E. (2016). Executive impairment is associated with impaired memory performance in working-aged stroke patients. Journal of the International Neuropsychological Society, 22, 551560. doi: 10.1017/S1355617716000205 Google Scholar
van Swieten, J.C., Koudstaal, P.J., Visser, M.C., Schouten, H.J.A., & van Gijn, J. (1988). Interobserver agreement for the assessment of handicap in stroke patients. Stroke, 19, 604607.Google Scholar
Vilkki, J. (1989). Hemi-inattention in visual search for parallel lines after focal cerebral lesions. Journal of Clinical and Experimental Neuropsychology, 11, 319331.Google Scholar
Wechsler, D. (1987). Wechsler Memory Scale - Revised. San Antonio: The Psychological Corporation.Google Scholar
Wechsler, D. (1996). WMS-R käsikirja. [The WMS-R. A Finnish manual]. Helsinki: Psykologien Kustannus Oy.Google Scholar
Wechsler, D. (1997). Wechsler Adult Intelligence Scale - Third edition. San Antonio: The Psychological Corporation.Google Scholar
Wechsler, D. (2005). WAIS-III käsikirja. [The WAIS-III. A Finnish manual]. Helsinki: Psykologien Kustannus Oy.Google Scholar