Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-24T06:30:50.925Z Has data issue: false hasContentIssue false

Cognitive dispersion is elevated in amyloid-positive older adults and associated with regional hypoperfusion

Published online by Cambridge University Press:  12 September 2022

Sophia L. Holmqvist
Affiliation:
Research Service, VA San Diego Healthcare System, San Diego, CA, USA
Kelsey R. Thomas
Affiliation:
Research Service, VA San Diego Healthcare System, San Diego, CA, USA Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
Emily C. Edmonds
Affiliation:
Research Service, VA San Diego Healthcare System, San Diego, CA, USA Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
Amanda Calcetas
Affiliation:
Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
Lauren Edwards
Affiliation:
San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
Katherine J. Bangen*
Affiliation:
Research Service, VA San Diego Healthcare System, San Diego, CA, USA Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
*
Corresponding author: Katherine J. Bangen, email: [email protected]

Abstract

Objective:

Cognitive dispersion across neuropsychological measures within a single testing session is a promising marker predictive of cognitive decline and development of Alzheimer’s disease (AD). However, little is known regarding brain changes underlying cognitive dispersion, and the association of cognitive dispersion with in vivo AD biomarkers and regional cerebral blood flow (CBF) has received limited study. We therefore examined associations among cognitive dispersion, amyloid-beta (Aβ) positivity, and regional CBF among older adults free of dementia.

Method:

One hundred and forty-eight Alzheimer’s Disease Neuroimaging Initiative (ADNI) participants underwent neuropsychological testing and neuroimaging. Pulsed arterial spin labeling (ASL) magnetic resonance imaging (MRI) was acquired to quantify CBF. Florbetapir positron emission tomography (PET) imaging determined Aβ positivity.

Results:

Adjusting for age, gender, education, and mean cognitive performance, older adults who were Aβ+ showed higher cognitive dispersion relative to those who were Aβ-. Across the entire sample, higher cognitive dispersion was associated with reduced CBF in inferior parietal and temporal regions. Secondary analyses stratified by Aβ status demonstrated that higher cognitive dispersion was associated with reduced CBF among Aβ+ individuals but not among those who were Aβ-.

Conclusions:

Cognitive dispersion may be sensitive to early Aβ accumulation and cerebrovascular changes adjusting for demographics and mean neuropsychological performance. Associations between cognitive dispersion and CBF were observed among Aβ+ individuals, suggesting that cognitive dispersion may be a marker of brain changes among individuals on the AD continuum. Future studies should examine whether cognitive dispersion predicts brain changes in diverse samples and among those with greater vascular risk burden.

Type
Research Article
Copyright
Copyright © INS. Published by Cambridge University Press, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bangen, K. J., Weigand, A. J., Thomas, K. R., Delano-Wood, L., Clark, L. R., Eppig, J., Werhane, M. L., Edmonds, E. C., &  Bondi, M. W. (2019). Cognitive dispersion is a sensitive marker for early neurodegenerative changes and functional decline in nondemented older adults. Neuropsychology, 33, 599608. https://doi.org/10.1037/neu0000532 CrossRefGoogle ScholarPubMed
Bangen, K. J., Thomas, K. R., Sanchez, D. L., Edmonds, E. C., Weigand, A. J., Delano-Wood, L., & Bondi, M. W. (2021). Entorhinal perfusion predicts future memory decline, neurodegeneration, and white matter hyperintensity progression in older Adults. Journal of Alzheimer’s Disease, 81, 1711–1725. https://doi.org/10.3233/JAD-201474 Google ScholarPubMed
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57, 289300.Google Scholar
Brickman, A. M., Zahodne, L. B., Guzman, V. A., Narkhede, A., Meier, I. B., Griffith, E. Y., Provenzano, F. A., Schupf, N., Manly, J. J., Stern, Y., Luchsinger, J. A., & Mayeux, R. (2015). Reconsidering harbingers of dementia: Progression of parietal lobe white matter hyperintensities predicts Alzheimer’s disease incidence. Neurobiology of Aging, 36, 2732. https://doi.org/10.1016/j.neurobiolaging.2014.07.019 CrossRefGoogle ScholarPubMed
Cherry, B. J., Buckwalter, J. G., & Henderson, V. W. (2002). Better preservation of memory span relative to supraspan immediate recall in Alzheimer’s disease. Neuropsychologia, 40, 846852. https://doi.org/10.1016/s0028-3932(01)00173-7 CrossRefGoogle ScholarPubMed
Contreras, J. A., Aslanyan, V., Sweeney, M. D., Sanders, L., Sagare, A. P., Zlokovic, B. V., Toga, A. W., Han, S. D., Morris, J. C., Fagan, A., Massoumzadeh, P., Benzinger, T. L., & Pa, J. (2020). Functional connectivity among brain regions affected in Alzheimer’s disease is associated with CSF TNF-α in APOE4 carriers. Neurobiology of Aging, 86, 112122. https://doi.org/10.1016/j.neurobiolaging.2019.10.013 CrossRefGoogle ScholarPubMed
Delbeuck, X., Van der Linden, M., & Collette, F. (2003). Alzheimer’s disease as a disconnection syndrome? Neuropsychology Review, 13, 7992. https://doi.org/10.1023/a:1023832305702 CrossRefGoogle ScholarPubMed
Dickerson, B. C., Stoub, T. R., Shah, R. C., Sperling, R. A., Killiany, R. J., Albert, M. S., Hyman, B. T., Blacker, D., & Detoledo-Morrell, L. (2011). Alzheimer-signature MRI biomarker predicts AD dementia in cognitively normal adults. Neurology, 76, 13951402. https://doi.org/10.1212/WNL.0b013e3182166e96 CrossRefGoogle ScholarPubMed
Edmonds, E. C., Delano-Wood, L., Clark, L. R., Jak, A. J., Nation, D. A., McDonald, C. R., Libon, D. J., Au, R., Galasko, D., Salmon, D. P., & Bondi, M. W. (2015). Susceptibility of the conventional criteria for mild cognitive impairment to false-positive diagnostic errors. Alzheimer’s and Dementia, 11, 415424. https://doi.org/10.1016/j.jalz.2014.03.005 CrossRefGoogle ScholarPubMed
Fellows, R. P., & Schmitter-Edgecombe, M. (2015). Between-domain cognitive dispersion and functional abilities in older adults. Journal of Clinical and Experimental Neuropsychology, 37, 10131023. https://doi.org/10.1080/13803395.2015.1050360 CrossRefGoogle ScholarPubMed
Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., & Dale, A. M. (2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron, 33, 341355. https://doi.org/10.1016/S0896-6273(02)00569-X CrossRefGoogle ScholarPubMed
Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Ségonne, F., Salat, D. H., Busa, E., Seidman, L. J., Goldstein, J., Kennedy, D., Caviness, V., Makris, N., Rosen, B., & Dale, A. M. (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14, 1122. https://doi.org/10.1093/cercor/bhg087 CrossRefGoogle ScholarPubMed
Gleason, C. E., Norton, D., Anderson, E. D., Wahoske, M., Washington, D. T., Umucu, E., Koscik, R. L., Dowling, N. M., Johnson, S. C., Carlsson, C. M., & Asthana, S. (2018). Cognitive variability predicts incident Alzheimer’s disease and mild cognitive impairment comparable to a cerebrospinal fluid biomarker. Journal of Alzheimer’s Disease, 61, 7989. https://doi.org/10.3233/JAD-170498 CrossRefGoogle ScholarPubMed
Halliday, D. W. R., Stawski, R. S., Cerino, E. S., Decarlo, C. A., Grewal, K., & Macdonald, S. W. S. (2018). Intraindividual variability across neuropsychological tests: Dispersion and disengaged lifestyle increase risk for Alzheimer’s disease. Journal of Intelligence, 6, 112. https://doi.org/10.3390/jintelligence6010012 CrossRefGoogle ScholarPubMed
Hilborn, J. V., Strauss, E., Hultsch, D. F., & Hunter, M. A. (2009). Intraindividual variability across cognitive domains: Investigation of dispersion levels and performance profiles in older adults. Journal of Clinical and Experimental Neuropsychology, 31, 412424. https://doi.org/10.1080/13803390802232659 CrossRefGoogle ScholarPubMed
Holtzer, R., Verghese, J., Wang, C., Hall, C. B., & Lipton, R. B. (2008). Within-person across-neuropsychological test variability and incident dementia. JAMA – Journal of the American Medical Association, 300, 823830. https://doi.org/10.1001/jama.300.7.823 CrossRefGoogle ScholarPubMed
Holtzer, R., Jacobs, S., & Demetriou, E. (2020). Intraindividual variability in verbal fluency performance is moderated by and predictive of mild cognitive impairments. Neuropsychology, 34, 3142. https://doi.org/10.1037/neu0000576 CrossRefGoogle ScholarPubMed
Jacobson, M. W., Delis, D. C., Peavy, G. M., Wetter, S. R., Bigler, E. D., Abildskov, T. J., Bondi, M. W., & Salmon, D. P. (2009). The emergence of cognitive discrepancies in preclinical Alzheimer’s disease: A 6-year case study. Neurocase, 15, 278293. https://doi.org/10.1080/13554790902729465 CrossRefGoogle Scholar
Koscik, R. L., Berman, S. E., Clark, L. R., Mueller, K. D., Okonkwo, O. C., Gleason, C. E., Hermann, B. P., Sager, M. A., & Johnson, S. C. (2016). Intraindividual cognitive variability in middle age predicts cognitive impairment 8–10 years later: Results from the Wisconsin registry for Alzheimer’s prevention. Journal of the International Neuropsychological Society, 22, 10161025. https://doi.org/10.1017/S135561771600093X CrossRefGoogle ScholarPubMed
Landau, S. M., Thomas, B. A., Thurfjell, L., Schmidt, M., Margolin, R., Mintun, M., Pontecorvo, M., Baker, S. L., & Jagust, W. J. (2014). Amyloid PET imaging in Alzheimer’s disease: A comparison of three radiotracers. European Journal of Nuclear Medicine and Molecular Imaging, 41, 13981407. https://doi.org/10.1007/s00259-014-2753-3 CrossRefGoogle ScholarPubMed
Lin, S. S., & McDonough, I. M. (2022). Intra-individual cognitive variability in neuropsychological assessment: A sign of neural network dysfunction. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 29, 375399. https://doi.org/10.1080/13825585.2021.2021134 CrossRefGoogle ScholarPubMed
Luh, W. M., Wong, E. C., Bandettini, P. A., & Hyde, J. S. (1999). QUIPSS II with thin-slice TI1 periodic saturation: A method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Magnetic Resonance in Medicine, 41, 12461254. https://doi.org/10.1002/(SICI)1522–2594(199906)41:6<1246:AID-MRM22>3.0.CO;2-N 3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Malek-Ahmadi, M., Lu, S., Chan, Y., Perez, S. E., Chen, K., & Mufson, E. J. (2017). Cognitive domain dispersion association with Alzheimer’s disease pathology. Journal of Alzheimer’s Disease, 58, 575583. https://doi.org/10.3233/JAD-161233 CrossRefGoogle ScholarPubMed
Mattsson, N., Tosun, D., Insel, P. S., Simonson, A., Jack, C. R., Beckett, L. A., Donohue, M., Jagust, W., Schuff, N., & Weiner, M. W. (2014). Association of brain amyloid-β with cerebral perfusion and structure in Alzheimer’s disease and mild cognitive impairment. Brain, 137, 15501561. https://doi.org/10.1093/brain/awu043 CrossRefGoogle ScholarPubMed
Meeker, K. L., Ances, B. M., Gordon, B. A., Rudolph, C. W., Luckett, P., Balota, D. A., Morris, J. C., Fagan, A. M., Benzinger, T. L., & Waring, J. D. (2021). Cerebrospinal fluid Aβ42 moderates the relationship between brain functional network dynamics and cognitive intraindividual variability. Neurobiology of Aging, 98, 116123.CrossRefGoogle ScholarPubMed
Parasuraman, R., & Martin, A. (1994). Cognition in Alzheimer’s disease: Disorders of attention and semantic knowledge. Current Opinion in Neurobiology, 4, 237244. https://doi.org/10.1016/0959-4388(94)90079-5 CrossRefGoogle ScholarPubMed
Plake, B. S., Reynolds, C. R., & Gutkin, T. B. (1981). A technique for the comparison of profile variability between independent groups. Journal of Clinical Psychology, 3, 142146.3.0.CO;2-8>CrossRefGoogle Scholar
Sanchez, D. L., Thomas, K. R., Edmonds, E. C., Bondi, M. W., & Bangen, K. J. (2020). Regional hypoperfusion predicts decline in everyday functioning at 3-year follow-up in older adults without dementia. Journal of Alzheimer’s Disease, 77, 12911304. https://doi.org/10.3233/JAD-200490 CrossRefGoogle Scholar
Sorg, S. F., Merritt, V. C., Clark, A. L., Werhane, M. L., Holiday, K. A., Schiehser, D. M., Bondi, M., & Delano-Wood, L. (2021). Elevated intraindividual variability in executive functions and associations with white matter microstructure in veterans with mild traumatic brain injury. Journal of the International Neuropsychological Society: JINS, 27, 305314. https://doi.org/10.1017/S1355617720000879 CrossRefGoogle ScholarPubMed
Storandt, M., Grant, E. A., Miller, J. P., & Morris, J. C. (2006). Longitudinal course and neuropathologic outcomes in original versus revised MCI and in pre-MCI. Neurology, 67, 467473. https://doi.org/10.1212/01.wnl.0000228231.26111.6e CrossRefGoogle Scholar
Thomas, K. R., Osuna, J. R., Weigand, A. J., Edmonds, E. C., Clark, A. L., Holmqvist, S., Cota, I. H., Wierenga, C. E., Bondi, M. W., & Bangen, K. J. (2021). Regional hyperperfusion in older adults with objectively-defined subtle cognitive decline. Journal of Cerebral Blood Flow and Metabolism, 41, 10011012. https://doi.org/10.1177/0271678X20935171 CrossRefGoogle ScholarPubMed
Vance, D. E., Del Bene, V. A., Frank, J. S., Billings, R., Triebel, K., Buchholz, A., Rubin, L. H., Woods, S. P., Li, W., & Fazeli, P. L. (2021). Cognitive intra-individual variability in HIV: An integrative review. Neuropsychology Review, https://doi.org/10.1007/s11065-021-09528-x Google ScholarPubMed
Watermeyer, T., Goerdten, J., Johansson, B., & Muniz-Terrera, G. (2021). Cognitive dispersion and ApoEe4 genotype predict dementia diagnosis in 8-year follow-up of the oldest-old. Age and Ageing, 50, 868874. https://doi.org/10.1093/ageing/afaa232 CrossRefGoogle ScholarPubMed
Watermeyer, T., Marroig, A., Ritchie, C. W., Ritchie, K., Blennow, K., & Muniz-Terrera, G. (2020). Cognitive dispersion is not associated with cerebrospinal fluid biomarkers of Alzheimer’s disease: Results from the European prevention of Alzheimer’s dementia (EPAD) v500.0 cohort. Journal of Alzheimer’s Disease, 78, 185194. https://doi.org/10.3233/JAD-200514 CrossRefGoogle Scholar
Yew, B., & Nation, D. A. (2017). Cerebrovascular resistance: Effects on cognitive decline, cortical atrophy, and progression to dementia. Brain, 140, 19872001. https://doi.org/10.1093/brain/awx112 CrossRefGoogle ScholarPubMed
Supplementary material: File

Holmqvist et al. supplementary material

Table S1

Download Holmqvist et al. supplementary material(File)
File 26.1 KB