Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-05T16:21:08.842Z Has data issue: false hasContentIssue false

Verbal fluency in HIV infection: A meta-analytic review

Published online by Cambridge University Press:  13 December 2006

JENNIFER E. IUDICELLO
Affiliation:
Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California, San Diego, San Diego, California Department of Psychiatry, HIV Neurobehavioral Research Center, University of California, San Diego, School of Medicine, La Jolla, California
STEVEN PAUL WOODS
Affiliation:
Department of Psychiatry, HIV Neurobehavioral Research Center, University of California, San Diego, School of Medicine, La Jolla, California
THOMAS D. PARSONS
Affiliation:
Department of Neurology, University of North Carolina, Chapel Hill, School of Medicine, Chapel Hill, North Carolina Institute of Creative Technologies, University of Southern California, Marina Del Rey, California
LISA M. MORAN
Affiliation:
Department of Psychiatry, HIV Neurobehavioral Research Center, University of California, San Diego, School of Medicine, La Jolla, California
CATHERINE L. CAREY
Affiliation:
Department of Psychiatry, University of California, San Francisco, School of Medicine, San Francisco, California
IGOR GRANT
Affiliation:
Department of Psychiatry, HIV Neurobehavioral Research Center, University of California, San Diego, School of Medicine, La Jolla, California

Abstract

Given the largely prefrontostriatal neuropathogenesis of HIV-associated neurobehavioral deficits, it is often presumed that HIV infection leads to greater impairment on letter versus category fluency. A meta-analysis of the HIV verbal fluency literature was conducted (k = 37, n = 7110) to assess this hypothesis and revealed generally small effect sizes for both letter and category fluency, which increased in magnitude with advancing HIV disease severity. Across all studies, the mean effect size of category fluency was slightly larger than that of letter fluency. However, the discrepancy between category and letter fluency dissipated in a more conservative analysis of only those studies that included both tests. Thus, HIV-associated impairments in letter and category fluency are of similar magnitude, suggesting that mild word generation deficits are evident in HIV, regardless of whether traditional letter or semantic cues are used to guide the word search and retrieval process (JINS, 2007, 13, 183–189.)

Type
BRIEF COMMUNICATIONS
Copyright
© 2007 The International Neuropsychological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES (* An asterisk indicates that the study was included in the meta-analysis.)

* Baldeweg, T., Catalan, J., Pugh, K., Gruzelier, J., Lovett, E., Scurlock, H., Burgess, A., Riccio, M., & Hawkins, D.A. (1997). Neurophysiological changes associated with psychiatric symptoms in HIV-infected individuals without AIDS. Biological Psychiatry, 41, 474487.Google Scholar
* Becker, J.T. & Salthouse, T.A. (1999). Neuropsychological test performance in the acquired immunodeficiency syndrome: Independent effects of diagnostic group on functioning. Journal of the International Neuropsychological Society, 5, 4147.Google Scholar
* Boccellari, A.A., Dilley, J.W., Chambers, D.B., Yingling, C.D., Tauber, M.A., Moss, A.R., & Osmond, D.H. (1993). Immune function and neuropsychological performance in HIV-1 infected homosexual men. Journal of Acquired Immune Deficiency Syndromes, 6, 592601.Google Scholar
* Bornstein, R.A., Nasrallah, H.A., Para, M.F., Whitacre, C.C., Rosenberger, P., & Fass, R.J. (1993). Neuropsychological performance in symptomatic and asymptomatic HIV infection. AIDS, 7, 519524.Google Scholar
* Burgess, A.P., Riccio, M., Jadresic, D., Pugh, K., Catalan, J., Hawkins, D.A., Baldeweg, T., Lovett, E., Gruzelier, J., & Thompson, C. (1994). A longitudinal study of the neuropsychiatric consequences of HIV-1 infection in gay men. I. Neuropsychological performance and neurological status at baseline and at 12-month follow-up. Psychological Medicine, 24, 885889.Google Scholar
Centers for Disease Control and Prevention. (1992). 1993 revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. Morbidity and Mortality Weekly Report, 41 (Suppl. 44-17), 119.
Centers for Disease Control and Prevention. (2005). HIV/AIDS surveillance report, 2004. Vol. 16. Atlanta: US Department of Health and Human Services, Centers for Disease Control and Prevention.
* Clifford, D.B., Jacoby, R.G., Miller, J.P., Seyfried, W.R., & Glicksman, M. (1990). Neuropsychometric performance of asymptomatic HIV-infected subjects. AIDS, 4, 767774.Google Scholar
Cochran, W.G. (1954). The combination of estimates from different experiments. Biometrics, 10, 101129.Google Scholar
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.
* Collier, A.C., Marra, C., Coombs, R.W., Claypoole, K., Cohen, W., Longstreth, W.T., Townes, B.D., Maravilla, K.R., Critchlow, C., Murphy, V.L., & Handsfield, H.H. (1992). Central nervous system manifestations in human immunodeficiency virus infection without AIDS. Journal of Acquired Immune Deficiency Syndromes, 5, 229241.Google Scholar
Cysique, L.A.J., Maruff, P., & Brew, B.J. (2006). The neuropsychological profile of symptomatic AIDS and ADC patients in the pre-HAART era: A meta-analysis. Journal of the International Neuropsychological Society, 12, 368382.Google Scholar
DerSimonian, R. & Laird, N. (1986). Meta-analysis in clinical trials. Controlled Clinical Trials, 7, 177188.Google Scholar
* Di Sclafani, V., MacKay, R.D.S., Meyerhoff, D.J., Norman, D., Weiner, M.W., & Fein, G. (1997). Brain atrophy in HIV infection is more strongly associated with CDC clinical stage than with cognitive impairment. Journal of the International Neuropsychological Society, 3, 276287.Google Scholar
* Durvasula, R.S., Myers, H.F., Satz, P., Miller, E.N., Morgenstern, H., Richardson, M.A., Evans, G., & Forney, D. (2000). HIV-1, cocaine, and neuropsychological performance in African American men. Journal of the International Neuropsychological Society, 6, 322335.CrossRefGoogle Scholar
Fleiss, J.L. & Gross, A.J. (1991). Meta-analysis in epidemiology, with special reference to studies of the association between exposure to environmental tobacco smoke and lung cancer: A critique. Journal of Clinical Epidemiology, 44, 127139.Google Scholar
* Goethe, K.E., Mitchell, J.E., Marshall, D.W., Brey, R.L., Cahill, W.T., Leger, G.D., Hoy, L.J., & Boswell, R.N. (1989). Neuropsychological and neurological function of human immunodeficiency virus seropositive asymptomatic individuals. Archives of Neurology, 46, 129133.Google Scholar
Gonzalez-Scarano, F. & Martin-Garcia, J. (2005). The neuropathogenesis of AIDS. Nature Reviews Immunology, 5, 6981.Google Scholar
* Grohman, K., Donnelly, K., Strang, J., & Kleiner, J. (2002). Neuropsychological impairment in veterans who are HIV-positive. Brain and Cognition, 49, 194198.Google Scholar
* Grunseit, A.C., Perdices, M., Dunbar, N., & Cooper, D.A. (1994). Neuropsychological function in asymptomatic HIV-1 infection: Methodological issues. Journal of Clinical and Experimental Neuropsychology, 16, 898910.Google Scholar
* Heaton, R.K., Grant, I., Butters, N., White, D.A., Kirson, D., Atkinson, J.H., McCutchan, J.A., Taylor, M.J., Kelly, M.D., Ellis, R.J., Wolfson, T., Velin, R., Marcotte, T.D., Hesselink, J.R., Jernigan, T.L., Chandler, J., Wallace, M., Abramson, I., & the HNRC Group. (1995). The HNRC 500—Neuropsychology of HIV infection at different disease stages. Journal of the International Neuropsychological Society, 1, 231251.Google Scholar
Heaton, R.K., Marcotte, T.D., Mindt, M.R., Sadek, J., Moore, D.J., Bentley, H., McCutchan, J.A., Reicks, C., Grant, I., & the HNRC Group. (2004). The impact of HIV-associated neuropsychological impairment on everyday functioning. Journal of the International Neuropsychological Society, 10, 317331.Google Scholar
Hedges, L.V. & Olkin, I. (1985). Statistical methods for meta-analysis. New York: Academic Press.
Henry, J.D. & Beatty, W.W. (2006). Verbal fluency deficits in multiple sclerosis. Neuropsychologia, 44, 11661174.Google Scholar
Henry, J.D. & Crawford, J.R. (2004a). A meta-analytic review of verbal fluency performance following focal cortical lesions. Neuropsychology, 18, 284295.Google Scholar
Henry, J.D. & Crawford, J.R. (2004b). A meta-analytic review of verbal fluency performance in patients with traumatic brain injury. Neuropsychology, 18, 621628.Google Scholar
Hestad, K., McArthur, J.H., Dal Pan, G.J., Selnes, O.A., Nance-Sproson, T.E., Aylward, E., Matthews, V.P., & McArthur, J.C. (1993). Regional brain atrophy in HIV-1 infection: Association with specific neuropsychological test performance. Acta Neurologica Scandinavica, 88, 112118.Google Scholar
* Justice, A.C., McGinnis, K.A., Atkinson, J.H., Heaton, R.K., Young, C., Sadek, J., Madenwald, T., Becker, J.T., Conigliaro, J., Brown, S.T., Rimland, D., Crystal, S., & Simberkoff, M. (2004). Psychiatric and neurocognitive disorders among HIV-positive and negative veterans in care: Veterans aging cohort five-site study. AIDS, 18, S49S59.Google Scholar
* Krikorian, R., Wrobel, A.J., Meinecke, C., Liang, W.M., & Kay, J. (1990). Cognitive deficits associated with human immunodeficiency virus encephalopathy. The Journal of Neuropsychiatry and Clinical Neurosciences, 2, 256260.Google Scholar
Lau, J., Ioannidis, J.P., & Schmid, C.H. (1997). Quantitative synthesis in systematic reviews. Annals of Internal Medicine, 127, 820826.Google Scholar
* Levin, B.E., Berger, J.R., Didona, T., & Duncan, R. (1992). Cognitive function in asymptomatic HIV-1 infection: The effects of age, education, ethnicity, and depression. Neuropsychology, 6, 303313.Google Scholar
* Lopez, O.L., Becker, J.T., Dew, M.A., Banks, G., Dorst, S.K., & McNeil, M. (1994). Speech motor control disorder after HIV infection. Neurology, 44, 21872189.Google Scholar
* Marsh, N.V. & McCall, D.W. (1994). Early neuropsychological change in HIV infection. Neuropsychology, 8, 4448.Google Scholar
Martin, E.M., Pitrak, D.L., Pursell, K.J., Andersen, B.R., Mullane, K.M., & Novak, R.M. (1998). Information processing and antiretroviral therapy in HIV-1 infection. Journal of the International Neuropsychological Society, 4, 329335.Google Scholar
* Miller, E.N., Satz, P., & Visscher, B. (1991). Computerized and conventional neuropsychological assessment of HIV-1 infected homosexual men. Neurology, 41, 16081616.Google Scholar
Millikin, C.P., Trepanier, L.L., & Rourke, S.B. (2004). Verbal fluency component analysis in adults with HIV/AIDS. Journal of Clinical and Experimental Neuropsychology, 26, 933942.Google Scholar
Moore, D.J., Masliah, E., Rippeth, J.D., Gonzalez, R., Carey, C.L., Cherner, M., Ellis, R.J., Achim, C.L., Marcotte, T.D., Heaton, R.K., Grant, I., & the HNRC Group. (2006). Cortical and subcortical neurodegeneration is associated with HIV neurocognitive impairment. AIDS, 20, 879887.Google Scholar
* Nielsen-Bohlman, L., Boyle, D., Biggins, C., Ezekiel, F., & Fein, G. (1997). Semantic priming impairment in HIV. Journal of the International Neuropsychological Society, 3, 348358.Google Scholar
Parks, R.W., Lowenstein, D.A., Dodrill, K.L., Barker, W.W., Yoshii, F., Chang, J.Y., Emran, A., Apicella, A., Sheramata, W.A., & Duara, R. (1988). Cerebral metabolic effects of a verbal fluency test: A PET scan study. Journal of Clinical and Experimental Neuropsychology, 10, 565575.Google Scholar
* Perdices, M. & Cooper, D.A. (1990). Neuropsychological investigation of patients with AIDS and ARC. Journal of Acquired Immune Deficiency Syndromes, 3, 555564.Google Scholar
* Perry, S., Belsky-Barr, D., Barr, W.B., & Jacobsberg, L. (1989). Neuropsychological function in physically asymptomatic, HIV-seropositive men. The Journal of Neuropsychiatry and Clinical Neurosciences, 1, 296302.Google Scholar
Reger, M., Welsh, R., Razani, J., Martin, D.J., & Boone, K.B. (2002). A meta-analysis of the neuropsychological sequelae of HIV infection. Journal of the International Neuropsychological Society, 8, 410424.Google Scholar
* Riccio, M., Pugh, K., Jadresic, D., Burgess, A., Thompson, C., Wilson, B., Lovett, E., Baldeweg, T., Hawkins, D.A., & Catalan, J. (1993). Neuropsychiatric aspects of HIV-1 infection in gay men: Controlled investigation of psychiatric, neuropsychological and neurological status. Journal of Psychosomatic Research, 37, 819830.Google Scholar
* Richardson, M.A., Satz, P., Myers, H.F., Miller, E.N., Bing, E.G., Fawzy, F.I., & Maj, M. (1999). Effects of depressed mood versus clinical depression on neuropsychological test performance among African American men impacted by HIV/AIDS. Journal of Clinical and Experimental Neuropsychology, 21, 769783.Google Scholar
* Rippeth, J.D., Heaton, R.K., Carey, C.L., Marcotte, T.D., Moore, D.J., Gonzalez, R., Wolfson, T., Grant, I., & the HNRC Group. (2004). Methamphetamine dependence increases risk of neuropsychological impairment in HIV-infected persons. Journal of the International Neuropsychological Society, 10, 114.Google Scholar
Rosenthal, R. (1979). The “file drawer problem” and tolerance for null results. Psychological Bulletin, 86, 638641.Google Scholar
* Rothlind, J.C, Greenfield, T.M., Bruce, A.V., Meyerhoff, D.J., Flenniken, D.L., Lindgren, J.A., & Weiner, M.W. (2005). Heavy alcohol consumption in individuals with HIV infection: Effects on neuropsychological performance. Journal of the International Neuropsychological Society, 11, 7083.Google Scholar
* Sahakian, B.J., Elliott, R., Low, N., Mehta, M., Clark, R.T., & Pozniak, A.L. (1995). Neuropsychological deficits in tests of executive function in asymptomatic and symptomatic HIV-1 seropositive men. Psychological Medicine, 25, 12331246.Google Scholar
* Satz, P., Morgenstern, H., Miller, E.N., Selnes, O.A., McArthur, J.C., Cohen, B.A., Wesch, J., Becker, J.T., Jacobson, L., D'Elia, L.F., van Gorp, W.G., & Visscher, B. (1993). Low education as a possible risk factor for cognitive abnormalities in HIV-1: Findings from the Multicenter AIDS Cohort Study (MACS). Journal of Acquired Immune Deficiency Syndromes, 6, 503511.Google Scholar
* Saykin, A.J., Janssen, R.S., Sprehn, G.C., Kaplan, J.E., Spira, T.J., & Weller, P. (1988). Neuropsychological dysfunction in HIV-infection: Characterization in a lymphadenopathy cohort. International Journal of Clinical Neuropsychology, 10, 8195.Google Scholar
Shaddish, W.R. & Haddock, C.K. (1994). Combining estimates of effect size. In H. Cooper & L.V. Hedges (Ed.), The handbook of research synthesis. New York: Russell Sage Foundation.
* Skoraszewski, M.J., Ball, J.D., & Mikulka, P. (1991). Neuropsychological functioning of HIV-infected males. Journal of Clinical and Experimental Neuropsychology, 13, 278290.Google Scholar
Snedecor, G.W. & Cochran, W.G. (1989). Statistical methods (8th ed.). Ames, IA: Iowa State Press.
* Stern, R.A., Singer, N.G., Silva, S.G., Rogers, H.J., Perkins, D.O., Hall, C.D., van der Horst, C.M., & Evans, D.L. (1992). Neurobehavioral functioning in a nonconfounded group of asymptomatic HIV-seropositive homosexual men. The American Journal of Psychiatry, 149, 10991102.Google Scholar
Stout, J.C., Ellis, R.J., Jernigan, T.L., Archibald, S.L., Abramson, I., Wolfson, T., McCutchan, J.A., Wallace, M.R., Atkinson, J.H., & Grant, I. (1998). Progressive cerebral volume loss in human immunodeficiency virus infection: A longitudinal volumetric magnetic resonance imaging study. HIV Neurobehavioral Research Center Group. Archives of Neurology, 55, 161168.Google Scholar
* Tross, S., Price, R.W., Navia, B., Thaler, H.T., Gold, J., Hirsch, D.A., & Sidtis, J.J. (1988). Neuropsychological characterization of the AIDS dementia complex: A preliminary report. AIDS, 2, 8188.Google Scholar
* van Gorp, W.G., Satz, P., Hinkin, C., Selnes, O., Miller, E.N., McArthur, J., Cohen, B., Paz, D., & The Multicenter AIDS Cohort Study (MACS). (1991). Metacognition in HIV-1 seropositive asymptomatic individuals: Self-ratings versus objective neuropsychological performance. Multicenter AIDS Cohort Study (MACS). Journal of Clinical and Experimental Neuropsychology, 13, 812819.Google Scholar
* White, D.A., Taylor, M.J., Butters, N., Mack, C., Salmon, D.P., Peavy, G., Ryan, L., Heaton, R.K., Atkinson, J.H., Chandler, J.L., Grant, I., & the HNRC Group. (1997). Memory for verbal information in individuals with HIV-associated dementia complex. Journal of Clinical and Experimental Neuropsychology, 19, 357366.Google Scholar
* Wilkie, F.L., Eisdorfer, C., Morgan, R., Loewenstein, D.A., & Szapocznik, J. (1990). Cognition in early human immunodeficiency virus infection. Archives of Neurology, 47, 433440.Google Scholar
* Woods, S.P., Carey, C.L., Troster, A.I., Grant, I., & the HNRC Group. (2005). Action (verb) generation in HIV-1 infection. Neuropsychologia, 43, 11441151.Google Scholar
* Woods, S.P., Conover, E., Rippeth, J.D., Carey, C.L., Gonzalez, R., Marcotte, T.D., Heaton, R.K., Grant, I., & the HNRC Group. (2004). Qualitative aspects of verbal fluency in HIV-associated dementia: A deficit in rule-guided lexical-semantic search processes? Neuropsychologia, 42, 801809.Google Scholar
Woods, S.P. & Grant, I. (2005). Neuropsychology of HIV. In H.E. Gendelman, I. Grant, I. Everall, S.A. Lipton, & S. Swindells (Eds.), The neurology of AIDS (2nd ed.) (pp. 607616). London: Oxford University Press.
Woods, S.P., Morgan, E.E., Dawson, M., Scott, J.C., Grant, I., & the HNRC Group. (2006). Action (verb) fluency predicts dependence in instrumental activities of daily living in persons infected with HIV-1. Journal of Clinical and Experimental Neuropsychology, 28, 10301042.Google Scholar
Zakzanis, K.K. (2001). Statistics to tell the truth, the whole truth, and nothing but the truth: Formulae, illustrative numerical examples, and heuristic interpretation of effect size analyses for neuropsychological researchers. Archives of Clinical Neuropsychology, 16, 653667.Google Scholar