Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-18T11:19:22.748Z Has data issue: false hasContentIssue false

Striatal and Pallidal Activation during Reward Modulated Movement Using a Translational Paradigm

Published online by Cambridge University Press:  06 July 2015

Amanda Bischoff-Grethe*
Affiliation:
Veterans Affairs San Diego Healthcare System, San Diego, California and Department of Psychiatry, University of California, San Diego
Richard B. Buxton
Affiliation:
Department of Radiology, University of California, San Diego
Martin P. Paulus
Affiliation:
Laureate Institute for Brain Research, Tulsa, Oklahoma
Adam S. Fleisher
Affiliation:
Department of Neurosciences, University of California, San Diego and Banner Alzheimer’s Institute, Phoenix, Arizona
Tony T. Yang
Affiliation:
Department of Psychiatry, Division of Child and Adolescent Psychiatry, University of California, San Francisco
Gregory G. Brown
Affiliation:
Veterans Affairs San Diego Healthcare System, San Diego, California and Department of Psychiatry, University of California, San Diego
*
Correspondence and reprint requests to: Amanda Bischoff-Grethe, University of California, San Diego, 9500 Gilman Drive MC 0738, La Jolla, CA 92093-0738. E-mail: [email protected]

Abstract

Human neuroimaging studies of reward processing typically involve tasks that engage decision-making processes in the dorsal striatum or focus upon the ventral striatum’s response to feedback expectancy. These studies are often compared to the animal literature; however, some animal studies include both feedback and nonfeedback events that activate the dorsal striatum during feedback expectancy. Differences in task parameters, movement complexity, and motoric effort to attain rewards may partly explain ventral and dorsal striatal response differences across species. We, therefore, used a target capture task during functional neuroimaging that was inspired by a study of single cell modulation in the internal globus pallidus during reward-cued, rotational arm movements in nonhuman primates. In this functional magnetic resonance imaging study, participants used a fiberoptic joystick to make a rotational response to an instruction stimulus that indicated both a target location for a capture movement and whether or not the trial would end with feedback indicating either a small financial gain or a neutral outcome. Portions of the dorsal striatum and pallidum demonstrated greater neural activation to visual cues predicting potential gains relative to cues with no associated outcome. Furthermore, both striatal and pallidal regions displayed a greater response to financial gains relative to neutral outcomes. This reward-dependent modulation of dorsal striatal and pallidal activation in a target-capture task is consistent with findings from reward studies in animals, supporting the use of motorically complex tasks as translational paradigms to investigate the neural substrates of reward expectancy and outcome in humans. (JINS, 2015, 21, 399–411)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ances, B.M., Leontiev, O., Perthen, J.E., Liang, C., Lansing, A.E., & Buxton, R.B. (2008). Regional differences in the coupling of cerebral blood flow and oxygen metabolism changes in response to activation: Implications for BOLD-fMRI. Neuroimage, 39, 15101521. doi: 10.1016/j.neuroimage.2007.11.015 CrossRefGoogle ScholarPubMed
Apicella, P., Ljungberg, T., Scarnati, E., & Schultz, W. (1991). Responses to reward in monkey dorsal and ventral striatum. Experimental Brain Research, 85, 491500. doi: 10.1007/BF00231732 CrossRefGoogle ScholarPubMed
Arkadir, D., Morris, G., Vaadia, E., & Bergman, H. (2004). Independent coding of movement direction and reward prediction by single pallidal neurons. The Journal of Neuroscience, 24, 1004710056. doi: 10.1523/JNEUROSCI.2583-04.2004 CrossRefGoogle ScholarPubMed
Ashburner, J., & Friston, K.J. (1999). Nonlinear spatial normalization using basis functions. Human Brain Mapping, 7, 254266. doi: 10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO;2-G 3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Balleine, B.W., Delgado, M.R., & Hikosaka, O. (2007). The role of the dorsal striatum in reward and decision-making. The Journal of Neuroscience, 27, 81618165. doi: 10.1523/JNEUROSCI.1554-07.2007 CrossRefGoogle ScholarPubMed
Balleine, B.W., & O’Doherty, J.P. (2010). Human and rodent homologies in action control: Corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology, 35, 4869. doi: npp2009131 [pii] 10.1038/npp.2009.131 CrossRefGoogle ScholarPubMed
Bartra, O., McGuire, J.T., & Kable, J.W. (2013). The valuation system: A coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. Neuroimage, 76, 412427. doi: 10.1016/j.neuroimage.2013.02.063 CrossRefGoogle ScholarPubMed
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate - A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B-Methodological, 57, 289300. Retrieved from http://www.jstor.org/stable/2346101 Google Scholar
Benton, A.L., & Tranel, D. (1993). Visuoperceptive, visuospatial, and visuoconstructive disorders. In K.E. Heilman & E. Valenstein (Eds.), Clinical neuropsychology (3rd ed., pp. 165213). New York: Grune and Stratton.Google Scholar
Brand, M., Laier, C., Pawlikowski, M., & Markowitsch, H.J. (2009). Decision making with and without feedback: The role of intelligence, strategies, executive functions, and cognitive styles. Journal of Clinical and Experimental Neuropsychology, 31, 984998. doi: 10.1080/13803390902776860 CrossRefGoogle ScholarPubMed
Breiter, H.C., Aharon, I., Kahneman, D., Dale, A., & Shizgal, P. (2001). Functional imaging of neural responses to expectancy and experience of monetary gains and losses. Neuron, 30, 619639. doi: 10.1016/S0896-6273(01)00303-8 CrossRefGoogle ScholarPubMed
Brett, M., Anton, J.-L., Valabregue, R., & Poline, J.-B. (2002, June 2-6, 2002). Region of interest analysis using an SPM toolbox. Paper presented at the 8th International Conference on Functional Mapping of the Human Brain, Sendai, Japan.Google Scholar
Brown, G.G., Caligiuri, M., Meloy, M.J., Eberson, S.C., Kindermann, S.S., Frank, L.R., & Lohr, J.B. (2004). Functional brain asymmetries during visuomotor tracking. Journal of Clinical and Experimental Neuropsychology, 26, 356368. doi: 10.1080/13803390490510086 CrossRefGoogle ScholarPubMed
Bunzeck, N., Dayan, P., Dolan, R.J., & Duzel, E. (2010). A common mechanism for adaptive scaling of reward and novelty. Human Brain Mapping, 31, 13801394. doi: 10.1002/hbm.20939 CrossRefGoogle ScholarPubMed
Buracas, G.T., & Boynton, G.M. (2002). Efficient design of event-related fMRI experiments using M-sequences. Neuroimage, 16, 801813. doi: 10.1006/nimg.2002.1116 CrossRefGoogle ScholarPubMed
Buxton, R.B. (2009). Introduction to functional magnetic resonance imaging: Principles and techniques. New York: Cambridge University Press.CrossRefGoogle Scholar
Chau, D.T., Roth, R.M., & Green, A.I. (2004). The neural circuitry of reward and its relevance to psychiatric disorders. Current Psychiatry Reports, 6, 391399. doi: 10.1007/s11920-004-0026-8 CrossRefGoogle ScholarPubMed
Choi, J.K., Chen, Y.I., Hamel, E., & Jenkins, B.G. (2006). Brain hemodynamic changes mediated by dopamine receptors: Role of the cerebral microvasculature in dopamine-mediated neurovascular coupling. Neuroimage, 30, 700712. doi: 10.1016/j.neuroimage.2005.10.029 CrossRefGoogle ScholarPubMed
Daniel, R., & Pollmann, S. (2014). A universal role of the ventral striatum in reward-based learning: Evidence from human studies. Neurobiology of Learning and Memory, 114, 90100. doi: 10.1016/j.nlm.2014.05.002 CrossRefGoogle ScholarPubMed
Davis, C., Fox, J., Patte, K., Curtis, C., Strimas, R., Reid, C., & McCool, C. (2008). Education level moderates learning on two versions of the Iowa Gambling Task. Journal of the International Neuropsychological Society, 14, 10631068. doi: 10.1017/S1355617708081204 CrossRefGoogle ScholarPubMed
Davis, T.L., Kwong, K.K., Weisskoff, R.M., & Rosen, B.R. (1998). Calibrated functional MRI: Mapping the dynamics of oxidative metabolism. Proceedings of the National Academy of Sciences of the United States of America, 95, 18341839. doi: 10.1073/pnas.95.4.1834 CrossRefGoogle ScholarPubMed
Deichmann, R., Gottfried, J.A., Hutton, C., & Turner, R. (2003). Optimized EPI for fMRI studies of the orbitofrontal cortex. Neuroimage, 19, 430441. doi: 10.1016/s1053-8119(03)00073-9 CrossRefGoogle ScholarPubMed
Delgado, M.R., & Dickerson, K.C. (2012). Reward-related learning via multiple memory systems. Biological Psychiatry, 72, 134141. doi: 10.1016/j.biopsych.2012.01.023 CrossRefGoogle ScholarPubMed
Delgado, M.R., Locke, H.M., Stenger, V.A., & Fiez, J.A. (2003). Dorsal striatum responses to reward and punishment: Effects of valence and magnitude manipulations. Cognitive, Affective, & Behavioral Neuroscience, 3, 2738. doi: 10.3758/CABN.3.1.27 CrossRefGoogle ScholarPubMed
Delgado, M.R., Miller, M.M., Inati, S., & Phelps, E.A. (2005). An fMRI study of reward-related probability learning. Neuroimage, 24, 862873. doi: 10.1016/j.neuroimage.2004.10.002 CrossRefGoogle ScholarPubMed
Delgado, M.R., Nystrom, L.E., Fissell, C., Noll, D.C., & Fiez, J.A. (2000). Tracking the hemodynamic responses to reward and punishment in the striatum. Journal of Neurophysiology, 84, 30723077. Retrieved from http://jn.physiology.org CrossRefGoogle ScholarPubMed
DeLong, M.R. (1973). Putamen: Activity of single units during slow and rapid arm movements. Science, 179, 12401242. doi: 10.1126/science.179.4079.1240 CrossRefGoogle ScholarPubMed
DeLong, M.R., Georgopoulos, A.P., Crutcher, M.D., Mitchell, S.J., Richardson, R.T., & Alexander, G.E. (1984). Functional organization of the basal ganglia: Contributions of single-cell recording studies. Ciba Foundation Symposium, 107, 6482. doi: 10.1002/9780470720882.ch5 Google ScholarPubMed
Elliott, R., Friston, K.J., & Dolan, R.J. (2000). Dissociable neural responses in human reward systems. The Journal of Neuroscience, 20, 61596165. Retrieved from http://www.jneurosci.org CrossRefGoogle ScholarPubMed
Ernst, M., Nelson, E.E., McClure, E.B., Monk, C.S., Munson, S., Eshel, N., & Pine, D.S. (2004). Choice selection and reward anticipation: An fMRI study. Neuropsychologia, 42, 15851597. doi: 10.1016/j.neuropsychologia.2004.05.011 CrossRefGoogle ScholarPubMed
Evans, C.E., Kemish, K., & Turnbull, O.H. (2004). Paradoxical effects of education on the Iowa Gambling Task. Brain and Cognition, 54, 240244. doi: 10.1016/j.bandc.2004.02.022 CrossRefGoogle ScholarPubMed
Evarts, E.V., & Wise, S.P. (1984). Basal ganglia outputs and motor control. Ciba Foundation Symposium, 107, 83102. doi: 10.1002/9780470720882.ch6 Google ScholarPubMed
Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.-B., Frith, C.D., & Frackowiak, R.S.J. (1995). Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping, 2, 189210. doi: 10.1002/hbm.460020402 CrossRefGoogle Scholar
Galvan, A., Hare, T.A., Davidson, M., Spicer, J., Glover, G., & Casey, B.J. (2005). The role of ventral frontostriatal circuitry in reward-based learning in humans. The Journal of Neuroscience, 25, 86508656. doi: 10.1523/JNEUROSCI.2431-05.2005 CrossRefGoogle ScholarPubMed
Gdowski, M.J., Miller, L.E., Bastianen, C.A., Nenonene, E.K., & Houk, J.C. (2007). Signaling patterns of globus pallidus internal segment neurons during forearm rotation. Brain Research, 1155, 5669. doi: 10.1016/j.brainres.2007.04.028 CrossRefGoogle ScholarPubMed
Gdowski, M.J., Miller, L.E., Parrish, T., Nenonene, E.K., & Houk, J.C. (2001). Context dependency in the globus pallidus internal segment during targeted arm movements. Journal of Neurophysiology, 85, 9981004. Retrieved from http://jn.physiology.org CrossRefGoogle ScholarPubMed
Haber, S.N., & Knutson, B. (2010). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35, 426. doi: 10.1038/npp.2009.129 CrossRefGoogle ScholarPubMed
Harsay, H.A., Cohen, M.X., Oosterhof, N.N., Forstmann, B.U., Mars, R.B., & Ridderinkhof, K.R. (2011). Functional Connectivity of the Striatum Links Motivation to Action Control in Humans. The Journal of Neuroscience, 31, 1070110711. doi: 10.1523/JNEUROSCI.5415-10.2011 CrossRefGoogle ScholarPubMed
Hollerman, J.R., Tremblay, L., & Schultz, W. (1998). Influence of reward expectation on behavior-related neuronal activity in primate striatum. Journal of Neurophysiology, 80, 947963. Retrieved from http://jn.physiology.org/ CrossRefGoogle ScholarPubMed
Jensen, J., Smith, A.J., Willeit, M., Crawley, A.P., Mikulis, D.J., Vitcu, I., & Kapur, S. (2007). Separate brain regions code for salience vs. valence during reward prediction in humans. Human Brain Mapping, 28, 294302. doi: 10.1002/hbm.20274 CrossRefGoogle ScholarPubMed
Kawagoe, R., Takikawa, Y., & Hikosaka, O. (1998). Expectation of reward modulates cognitive signals in the basal ganglia. Nature Neuroscience, 1, 411416. Retrieved from http://www.nature.com/neuro/index.html CrossRefGoogle ScholarPubMed
Kim, H., Shimojo, S., & O’Doherty, J.P. (2011). Overlapping responses for the expectation of juice and money rewards in human ventromedial prefrontal cortex. Cerebral Cortex, 21, 769776. doi: 10.1093/cercor/bhq145 CrossRefGoogle ScholarPubMed
Knutson, B., Fong, G.W., Adams, C.M., Varner, J.L., & Hommer, D. (2001). Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport, 12, 36833687. doi: 10.1097/00001756-200112040-00016 CrossRefGoogle ScholarPubMed
Knutson, B., & Greer, S.M. (2008). Anticipatory affect: Neural correlates and consequences for choice. Philosophical Transactions of the Royal Society B-Biological Sciences, 363, 37713786. doi: 10.1098/rstb.2008.0155 CrossRefGoogle ScholarPubMed
Knutson, B., Westdorp, A., Kaiser, E., & Hommer, D. (2000). FMRI visualization of brain activity during a monetary incentive delay task. Neuroimage, 12, 2027. doi: 10.1006/nimg.2000.0593 CrossRefGoogle ScholarPubMed
Kornhuber, H.H. (1971). Motor functions of cerebellum and basal ganglia: The cerebellocortical saccadic (ballistic) clock, the cerebellonuclear hold regulator, and the basal ganglia ramp (voluntary speed smooth movement) generator. Kybernetik, 8, 157162. doi: 10.1007/BF00290561 CrossRefGoogle ScholarPubMed
Kwong, K.K., Belliveau, J.W., Chesler, D.A., Goldberg, I.E., Weisskoff, R.M., Poncelet, B.P., & Turner, R. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences of the United States of America, 89, 56755679. doi: 10.1073/pnas.89.12.5675 CrossRefGoogle ScholarPubMed
Lau, B., & Glimcher, P.W. (2007). Action and outcome encoding in the primate caudate nucleus. Journal of Neuroscience, 27, 1450214514. doi: 10.1523/JNEUROSCI.3060-07.2007 CrossRefGoogle ScholarPubMed
Lauwereyns, J., Watanabe, K., Coe, B., & Hikosaka, O. (2002). A neural correlate of response bias in monkey caudate nucleus. Nature, 418, 413417.CrossRefGoogle ScholarPubMed
Liu, X., Hairston, J., Schrier, M., & Fan, J. (2011). Common and distinct networks underlying reward valence and processing stages: A meta-analysis of functional neuroimaging studies. Neuroscience and Biobehavioral Reviews, 35, 12191236. doi: 10.1016/j.neubiorev.2010.12.012 CrossRefGoogle ScholarPubMed
Logothetis, N.K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412, 150157. Retrieved from http://www.nature.com.CrossRefGoogle ScholarPubMed
Mattfeld, A.T., Gluck, M.A., & Stark, C.E. (2011). Functional specialization within the striatum along both the dorsal/ventral and anterior/posterior axes during associative learning via reward and punishment. Learning & Memory, 18, 703711. doi: 10.1101/lm.022889.111 CrossRefGoogle ScholarPubMed
McClure, S.M., Ericson, K.M., Laibson, D.I., Loewenstein, G., & Cohen, J.D. (2007). Time discounting for primary rewards. The Journal of Neuroscience, 27, 57965804. doi: 10.1523/JNEUROSCI.4246-06.2007 CrossRefGoogle ScholarPubMed
McClure, S.M., Laibson, D.I., Loewenstein, G., & Cohen, J.D. (2004). Separate neural systems value immediate and delayed monetary rewards. Science, 306, 503507. doi: 10.1126/science.1100907 CrossRefGoogle ScholarPubMed
Mishra, A.M., Ellens, D.J., Schridde, U., Motelow, J.E., Purcaro, M.J., DeSalvo, M.N.,& Blumenfeld, H. (2011). Where fMRI and electrophysiology agree to disagree: Corticothalamic and striatal activity patterns in the WAG/Rij rat. The Journal of Neuroscience, 31, 1505315064. doi: 10.1523/JNEUROSCI.0101-11.2011 CrossRefGoogle ScholarPubMed
Neary, M.T., & Batterham, R.L. (2010). Gaining new insights into food reward with functional neuroimaging. Forum of Nutrition, 63, 152163. doi: 10.1159/000264403 CrossRefGoogle ScholarPubMed
Nieuwenhuis, S., Heslenfeld, D.J., Alting von Geusau, N.J., Mars, R.B., Holroyd, C.B., & Yeung, N. (2005). Activity in human reward-sensitive brain areas is strongly context dependent. Neuroimage, 25, 13021309. doi: 10.1016/J.Neuroimage.2004.12.043 CrossRefGoogle ScholarPubMed
O’Doherty, J.P., Deichmann, R., Critchley, H.D., & Dolan, R.J. (2002). Neural responses during anticipation of a primary taste reward. Neuron, 33, 815826.CrossRefGoogle ScholarPubMed
Ogawa, S., Tank, D.W., Menon, R., Ellermann, J.M., Kim, S.G., Merkle, H., &Ugurbil, K. (1992). Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proceedings of the National Academy of Sciences of the United States of America, 89, 59515955. doi: 10.1073/pnas.89.13.5951 CrossRefGoogle ScholarPubMed
Rademacher, L., Krach, S., Kohls, G., Irmak, A., Gründer, G., & Spreckelmeyer, K.N. (2010). Dissociation of neural networks for anticipation and consumption of monetary and social rewards. Neuroimage, 49, 32763285. doi: 10.1016/j.neuroimage.2009.10.089 CrossRefGoogle ScholarPubMed
Samanez-Larkin, G.R., Worthy, D.A., Mata, R., McClure, S.M., & Knutson, B. (2014). Adult age differences in frontostriatal representation of prediction error but not reward outcome. Cognitive, Affective & Behavioral Neuroscience, 14, 672682. doi: 10.3758/s13415-014-0297-4 CrossRefGoogle Scholar
Schultz, W. (2002). Getting formal with dopamine and reward. Neuron, 36, 241263.CrossRefGoogle ScholarPubMed
Schultz, W. (2007). Behavioral dopamine signals. Trends in Neurosciences, 30, 203210. doi: 10.1016/j.tins.2007.03.007 CrossRefGoogle ScholarPubMed
Seymour, B., Daw, N., Dayan, P., Singer, T., & Dolan, R. (2007). Differential encoding of losses and gains in the human striatum. Journal of Neuroscience, 27, 48264831.CrossRefGoogle ScholarPubMed
Shepherd, G.M. (1994). Neurobiology (3rd ed.) New York: Oxford University Press.Google Scholar
Shih, Y.Y., Chen, C.C., Shyu, B.C., Lin, Z.J., Chiang, Y.C., Jaw, F.S., & Chang, C. (2009). A new scenario for negative functional magnetic resonance imaging signals: Endogenous neurotransmission. The Journal of Neuroscience, 29, 30363044. doi: 10.1523/JNEUROSCI.3447-08.2009 CrossRefGoogle ScholarPubMed
Tanaka, S.C., Doya, K., Okada, G., Ueda, K., Okamoto, Y., & Yamawaki, S. (2004). Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nature Neuroscience, 7, 887893. doi: 10.1038/nn1279 CrossRefGoogle ScholarPubMed
Teasdale, N., Bard, C., Fleury, M., Young, D.E., & Proteau, L. (1993). Determining movement onsets from temporal series. Journal of Motor Behavior, 25, 97106. doi: 10.1080/00222895.1993.9941644 CrossRefGoogle ScholarPubMed
Thut, G., Schultz, W., Roelcke, U., Nienhusmeier, M., Missimer, J., Maguire, R.P., & Leenders, K.L. (1997). Activation of the human brain by monetary reward. Neuroreport, 8, 12251228. doi: 10.1097/00001756-199703240-00033 CrossRefGoogle ScholarPubMed
Tremblay, L., Hollerman, J.R., & Schultz, W. (1998). Modifications of reward expectation-related neuronal activity during learning in primate striatum. Journal of Neurophysiology, 80, 964977. Retrieved from http://jn.physiology.org CrossRefGoogle ScholarPubMed
Tricomi, E.M., Delgado, M.R., & Fiez, J.A. (2004). Modulation of caudate activity by action contingency. Neuron, 41, 281292.CrossRefGoogle ScholarPubMed
Turner, R.S., & Anderson, M.E. (2005). Context-dependent modulation of movement-related discharge in the primate globus pallidus. The Journal of Neuroscience, 25, 29652976. doi: 10.1523/JNEUROSCI.4036-04.2005 CrossRefGoogle ScholarPubMed
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N.,& Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15, 273289. doi: 10.1006/nimg.2001.0978 CrossRefGoogle ScholarPubMed
Volkow, N.D., Fowler, J.S., Gatley, S.J., Logan, J., Wang, G.J., Ding, Y.S., & Dewey, S. (1996). PET evaluation of the dopamine system of the human brain. Journal of Nuclear Medicine, 37, 12421256. Retrieved from http://jnm.snmjournals.org Google ScholarPubMed
Wallis, J.D., & Kennerley, S.W. (2011). Contrasting reward signals in the orbitofrontal cortex and anterior cingulate cortex. Annals of the New York Academy of Sciences, 1239, 3342. doi: 10.1111/j.1749-6632.2011.06277.x CrossRefGoogle ScholarPubMed
Wu, C.C., Sacchet, M.D., & Knutson, B. (2012). Toward an affective neuroscience account of financial risk taking. Frontiers in Neuroscience, 6, 159 doi: 10.3389/fnins.2012.00159 CrossRefGoogle ScholarPubMed
Yin, H.H., & Knowlton, B.J. (2006). The role of the basal ganglia in habit formation. Nature Reviews Neuroscience, 7, 464476.CrossRefGoogle ScholarPubMed
Supplementary material: File

Bischoff-Grethe supplemantary material S1

Supplementary Material Revision

Download Bischoff-Grethe supplemantary material S1(File)
File 145.4 KB