Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T17:27:54.503Z Has data issue: false hasContentIssue false

Number processing after stroke: Anatomoclinical correlations in oral and written codes

Published online by Cambridge University Press:  27 August 2003

Eugène Mayer*
Affiliation:
Neuropsychology Unit, Geneva University Hospital, Switzerland
Michael Reicherts
Affiliation:
Psychological Institute, University of Fribourg, Switzerland
Gérard Deloche
Affiliation:
Psychological Institute, University of Reims, France
Lucia Willadino-Braga
Affiliation:
Sarah's Rehabilitation Foundation, Brasilia, Brazil
Irène Taussik
Affiliation:
Psychological Institute, University of Buenos-Aires, Argentina
Monique Dordain
Affiliation:
Service de Neurologie, Clermont-Ferrand, France
Martial Van Der Linden
Affiliation:
Psychological Institute, University of Geneva, Switzerland
Jean-Marie Annoni
Affiliation:
Neuropsychology Unit, Geneva University Hospital, Switzerland
*
Reprint requests to: Dr. Eugène Mayer, Neuropsychological Unit, Neurological Clinic, University Hospital, CH-1211 Genève 14, Switzerland. E-mail: [email protected]

Abstract

Calculation and number-processing abilities were studied in 49 patients with chronic single vascular brain lesions by means of a standardized multitask assessment battery (EC301), as well as through other tasks, testing functions thought to be implicated in calculation such as language, visuo-perceptive abilities, verbal and spatial working memory, planning, and attention. The results show that (1) lesions involving parietal areas—particularly left parietal lesions—are prone to alter calculation processing. A more detailed analysis showed that patients with lesions involving left parietal areas were impaired in both digital (i.e., comprehension and production of numbers written in Arabic code) and oral (i.e., comprehension and production of numbers heard or expressed orally) processing while lesions involving right parietal areas lead to an impairment in digital processing only. However, linguistically related alphanumerical processing (i.e., comprehension and production of numbers written orthographically) was not influenced by parietal lesions. (2) Semantic representations (knowledge of the magnitude related to a given number) as well as rote arithmetical knowledge are also impaired following damage to parietal and particularly left parietal lesions, suggesting that these areas are also implicated in magnitude comparisons and in the retrieval of arithmetical facts. (3) Performance in calculation is highly correlated with language. (4) Moreover, we found a highly significant correlation between performances in oral calculation and verbal working memory, and between written-digit calculation and visuospatial working memory. Performances in regard to visuo-perceptive abilities, planning, and attention were less consistently correlated with calculation. These results stress the close correlation, but relative independence between calculation and language, as well as a dissociated sensitivity of oral and digital processing to brain lesions. (JINS, 2003, 9, 899–912.)

Type
Research Article
Copyright
Copyright © The International Neuropsychological Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, M. (1973). A simple test of visual neglect. Neurology, 23, 658664.10.1212/WNL.23.6.658CrossRefGoogle ScholarPubMed
Anderson, S.W., Damasio, A.R., & Damasio, H. (1990). Troubled letter but not number. Domain specific cognitive impairments following focal damage in frontal cortex. Brain, 113, 749766.10.1093/brain/113.3.749CrossRefGoogle Scholar
Ardila, A. & Rosselli, M. (1994). Spatial acalculia. International Journal of Neuroscience, 78, 177184.10.3109/00207459408986056CrossRefGoogle ScholarPubMed
Baddeley, A. (1986). Working memory. Oxford: Oxford University Press.Google ScholarPubMed
Basso, A., Burgio, F., & Caporali, A. (2000). Acalculia, aphasia and spatial disorders in left and right brain damaged patients. Cortex, 36, 265280.10.1016/S0010-9452(08)70528-8CrossRefGoogle ScholarPubMed
Benton, A.L. (1977). Reflections on the Gerstmann Syndrome. Brain and Language, 4, 4562.10.1016/0093-934X(77)90005-0CrossRefGoogle ScholarPubMed
Boller, F. & Grafman, J. (1985). Acalculias. In Frederiks, J.A.M. (Ed.), Handbook of clinical neurology, Vol. 45 (pp. 473482). Amsterdam, The Netherlands: Elsevier.Google Scholar
Brickenkamp, R. (1981). Test d2: Aufmerksamkeits-Belastungs-Test (Attention task), Handanweisung. (7th ed.). Göttingen: Verlag für Psychologie.Google Scholar
Bryden, M. (1977). Measuring handedness with a questionnaire. Neuropsychologia, 15, 617624.10.1016/0028-3932(77)90067-7CrossRefGoogle Scholar
Burbaud, P., Degreze, P., Lafon, P., Franconi, J.M., Bouligand, B., Bioulac, B., Caille, J.M., & Allard, M. (1995). Lateralization of prefrontal activation during internal mental calculation: A functional magnetic resonance imaging study. Journal of Neurophysiology, 5, 21942200.10.1152/jn.1995.74.5.2194CrossRefGoogle Scholar
Butterworth, B., Cipolotti, L., & Warrington, E.K. (1996). Short-term memory impairment and arithmetical ability. Quarterly Journal of Experimental Psychology, 49A, 251262.10.1080/713755603CrossRefGoogle Scholar
Carter, R., Hohenegger, M., & Satz, P. (1980). Handedness and aphasia: An inferential method for determining the mode of cerebral speech specialization. Neuropsychologia, 18, 569574.10.1016/0028-3932(80)90158-XCrossRefGoogle ScholarPubMed
Cipolotti, L. & van Harskamp, N. (2001). Disturbances of number processing and calculation. In Berndt, R.S. (Ed.), Handbook of neuropsychology, Vol. 3 (pp. 305331). (2nd ed.). Amsterdam, The Netherlands: Elsevier.Google Scholar
Clark, J. & Campbell, J. (1991). Integrated versus modular theories of numbers skills and acalculia. Brain and Cognition, 17, 204239.10.1016/0278-2626(91)90075-JCrossRefGoogle ScholarPubMed
Cohen, L., Dehaene, S., Chochon, F., Lehéricy, S., & Naccache, L. (2000). Language and calculation within the parietal lobe: A combined cognitive, anatomical and fMRI study. Neuropsychologia, 38, 14261440.10.1016/S0028-3932(00)00038-5CrossRefGoogle ScholarPubMed
Dahmen, W., Hartje, W., Büssing, A., & Sturm, W. (1982). Disorders of spatial calculation in aphasic patients. Spatial and verbal components. Neuropsychologia, 20, 145153.10.1016/0028-3932(82)90004-5CrossRefGoogle ScholarPubMed
Damasio, A.R. & Damasio, H. (1983). The anatomic basis of pure dyslexia. Neurology, 33, 15731583.10.1212/WNL.33.12.1573CrossRefGoogle Scholar
Dehaene, H. & Cohen, L. (1991). Two mental calculation systems: A case study of severe acalculia with preserved approximation. Neuropsychologia, 29, 10451074.10.1016/0028-3932(91)90076-KCrossRefGoogle ScholarPubMed
Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 142.10.1016/0010-0277(92)90049-NCrossRefGoogle ScholarPubMed
Dehaene, S. & Cohen, L. (1997). Cerebral pathways for calculation: Double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex, 33, 219250.10.1016/S0010-9452(08)70002-9CrossRefGoogle ScholarPubMed
Dehaene, S., Tzourio, N., Frak, V., Raynaud, L., Cohen, L., Mehler, J., & Mazoyer, B. (1996). Cerebral activation during number multiplication and comparisons: A PET study. Neuropsychologia, 34, 10971106.10.1016/0028-3932(96)00027-9CrossRefGoogle Scholar
Dehaene, S., Spelke, E., Pinel, E., Stanesku, R., & Tsivkin, S. (1999). Sources of mathematical thinking: Behavioral and brain imaging evidence. Science, 284, 970974.10.1126/science.284.5416.970CrossRefGoogle ScholarPubMed
Delazer, M., Girelli, L., Semenza, C., & Denes, G. (1999). Numerical skills and aphasia. Journal of the International Neuropsychological Society, 5, 213221.10.1017/S1355617799533043CrossRefGoogle ScholarPubMed
Dellatolas, G., Deloche, G., Basso, A., & Claros-Salinas, D. (2001). Assessment of calculation and number processing using the EC301 battery: Cross-cultural normative data and application to left- and right-brain damaged patients. Journal of the International Neuropsychological Society, 7, 840859.10.1017/S1355617701777077CrossRefGoogle ScholarPubMed
Deloche, G. (1995). EC301R-F. Batterie standardisée d'évaluation du Calcul et du traitement des nombres (Standardized Battery for the evaluation of calculation and number processing). Salvador, Brasil: Grafica Sarah Press.Google Scholar
Deloche, G. & Seron, X. (1982). From three to 3: A differential analysis of skills in transcoding quantities between patients with Broca's and Wernicke's aphasia. Brain, 105, 719733.10.1093/brain/105.4.719CrossRefGoogle ScholarPubMed
Deloche, G., Seron, X., Larroque, C., Magnien, C., Metz-Lutz, M.N., Noel, M.N., Riva, I., Schils, J.P., Dordain, M., Ferrand, I., Baeta, E., Basso, A., Cipolotti, L., Claros-Salinas, D., Howard, D., Gaillard, F., Goldenberg, G., Mazzucchi, A., Stachowiak, F., Tzavaras, A., Vendrell, J., Bergego, C., & Pradat-Diehl, P. (1994). Calculation and number processing: Assessment battery; role of demographic factors. Journal of Clinical and Experimental Neuropsychology, 16, 195208.10.1080/01688639408402631CrossRefGoogle ScholarPubMed
Deloche, G., Hannequin, D., Carlomagno, S., Agniel, A., Dordain, M., Pasquier, F., Pellat, J., Denis, P., Desi, M., Beauchamp, D., Metz-Lutz, M.-N., Cesaro, P., & Seron, X. (1995). Calculation and number processing in mild Alzheimer's disease. Journal of Clinical and Experimental Neuropsychology, 17, 634639.10.1080/01688639508405151CrossRefGoogle ScholarPubMed
Furst, A.J. & Hitch, G.J. (2000). Separate roles for executive and phonological components of working memory in mental arithmetic. Memory and Cognition, 28, 774782.10.3758/BF03198412CrossRefGoogle ScholarPubMed
Grafman, J., Passafiume, D., Faglioni, P., & Boller, F. (1982). Calculation disturbances in adults with focal hemispheric damage. Cortex, 18, 3750.10.1016/S0010-9452(82)80017-8CrossRefGoogle ScholarPubMed
Hécaen, H., Anguelergues, R., & Houillier, S. (1961). Les variétés cliniques des acalculies au cours des lésions rétrorolandiques. Approches statistiques du problème (Clinical varieties of acalculias during post-Rolandic lesions: A statistical approach to the problem). Revue Neurologique, 105, 85103.Google Scholar
Henschen, S. (1920). Klinische und Anatomische Beitrage zur Pathologie des Gehirns (Clinical and anatomical approach of brain pathology). Stockholm, Sweden: Nordiska Bukhandeln.Google Scholar
Holender, D. & Peereman, R. (1987). Differential processing of phonographic and logographic single digit by the two hemispheres. In Seron, X. (Ed.), Mathematical disabilities: A cognitive neuropsychological perspective (pp. 4385). Hillsdale, New Jersey: Lawrence Erlbaum Associated.Google Scholar
Jackson, M. & Warrington, E. (1986). Arithmetic skills in patient with unilateral cerebral lesions. Cortex, 22, 611620.10.1016/S0010-9452(86)80020-XCrossRefGoogle ScholarPubMed
Kertesz, A. (1977). Recovery pattern and prognosis in aphasia. Brain, 100, 118.10.1093/brain/100.1.1CrossRefGoogle Scholar
Kleist, K. (1934). Gehirnpathologie (Brain pathology). Leipzig: Barth.Google Scholar
Lee, K.M. (2000). Cortical areas differentially involved in multiplication and subtraction: A functional magnetic resonance imaging study and correlation with a case of selective acalculia. Annals of Neurology, 48, 657661.10.1002/1531-8249(200010)48:4<657::AID-ANA13>3.0.CO;2-K3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Lee, K.M. & Kang, S.Y. (2002). Arithmetic operation and working memory: Differential suppression in dual tasks. Cognition, 83, 6368.10.1016/S0010-0277(02)00010-0CrossRefGoogle ScholarPubMed
Logie, R.H., Gilhooly, K.J., & Wynn, V. (1994). Counting on working memory in arithmetic problem solving. Memory and Cognition, 22, 395410.10.3758/BF03200866CrossRefGoogle ScholarPubMed
MacCloskey, M. & Caramazza, A. (1987). Cognitive mechanism in normal and impaired number processing. In Deloche, G. & Seron, X. (Eds.), Mathematical disabilities: A cognitive neuropsychological perspective (pp. 201220). Hillsdale, New Jersey: Lawrence Erlbaum Associated.Google Scholar
Mayer, E., Martory, M.D., Pegna, A., Landis, T., & Annoni, J.M. (1999). A pure case of Gerstmann's syndrome with subcortical lesion. Brain, 122, 11071120.10.1093/brain/122.6.1107CrossRefGoogle Scholar
Mesulam, M. (1981). A cortical network for directed attention and unilateral neglect. Annals of Neurology, 10, 309325.10.1002/ana.410100402CrossRefGoogle ScholarPubMed
Metz-Lutz, M.N., Kremin, H., Deloche, G., Hannequin, D., Ferrand, I., Perrier, D., Quint, S., Dordain, M., Bunel, G., Cardebat, D., Larroque, C., Lota, A.M., Pichard, B., & Blavier, A. (1991). Standardisation d'un test de dénomination orale: Contrôle des effets de l'âge, du sexe et du niveau de scolarité chez des sujets adultes normaux (Standardization of an oral naming test controlling the effects of age, gender and education level in normal adult subjects). Revue de Neuropsychologie, 1, 7395.Google Scholar
Milner, B. (1971). Interhemispheric differences in the localization of psychological process in man. British Medical Bulletin, 21, 272277.10.1093/oxfordjournals.bmb.a070866CrossRefGoogle Scholar
Nespoulous, J.L., Lecours, A.R., Lafond, D., Lemay, A., Puel, M., Joanette, Y., Cot, F., & Rascol, A. (1992). Protocole Montréal-Toulouse d'examen linguistique de l'aphasie, MT 86, Module standard initial: M1[beta] (The Montreal-Toulouse aphasia language exam MT86, Standard initial module:M1B). Montréal, Canada: Ortho Editions.Google Scholar
Noel, M.P. & Seron, X. (1993). Arabic number reading deficit: A single case study or when 236 is read (2306) and judged superior to 1258. Cognitive Neuropsychology, 10, 317339.10.1080/02643299308253467CrossRefGoogle Scholar
Noel, M.P., Désert, M., Aubrun, A., & Seron, W. (2001). Involvement of short-term memory in complex mental calculation. Memory and Cognition, 29, 3442.10.3758/BF03195738CrossRefGoogle ScholarPubMed
Paulesu, E., Frith, C., & Frackoviak, R. (1993). The neural correlates of working memory. Nature, 362, 342345.10.1038/362342a0CrossRefGoogle ScholarPubMed
Pesenti, M., Thioux, M., Seron, X., & De Volder, A. (2000). Neuroanatomical substrates of Arabic number processing, numerical comparison, and simple addition: A PET study. Journal of Cognitive Neuroscience, 12, 461479.10.1162/089892900562273CrossRefGoogle ScholarPubMed
Pinel, P., Le Clec'H, G., Van de Moortele, P.F., Naccache, L., Le Bihan, D., & Dehaene, S. (1999). Event-related fMRI analysis of the cerebral circuit for number comparison. Neuroreport, 10, 14731479.10.1097/00001756-199905140-00015CrossRefGoogle ScholarPubMed
Ratinckx, E., Brysbaert, M., & Reynvoet, B. (2001). Bilateral field interactions and hemispheric asymmetry in number comparison. Neuropsychologia, 39, 335345.10.1016/S0028-3932(00)00143-3CrossRefGoogle ScholarPubMed
Rickard, T.C., Romero, S.G., Basso, G., Wharton, C., Flitman, S., & Grafman, J. (2000). The calculating brain: An fMRI study. Neuropsychologia, 38, 325335.10.1016/S0028-3932(99)00068-8CrossRefGoogle Scholar
Roeltgen, D.P., Sevush, S., & Heilman, K.M. (1983). Pure Gerstmann's Syndrome from a focal lesion. Archives of Neurology, 40, 4647.10.1001/archneur.1983.04050010066019CrossRefGoogle ScholarPubMed
Rosselli, M. & Ardila, A. (1989). Calculation deficits in patients with right and left hemisphere damage. Neuropsychologia, 27, 607617.10.1016/0028-3932(89)90107-3CrossRefGoogle ScholarPubMed
Shallice, T. (1982). Specific impairments of planning. Philosophical Transactions of the Royal Society of London B, 298, 199209.Google ScholarPubMed
Seron, X. (1993). Les lexiques numériques: Approches psycholinguistique et neuropsychologique (Lexical numerics: Psycholinguistic and neuropsychological approaches). Revue de Neuropsychologie, 3, 221247.Google Scholar
Sokol, S., MacCloskey, M., Cohen, N., & Aliminosa, D. (1991). Cognitive representations and processes in arithmetic: inferences from the performances of brain-damaged subjects. Journal of Experimental Psychology, 17, 355376.Google Scholar
Stone, M., Gabrieli, J., Stebbins, G., & Sullivan, E. (1998). Working and strategic memory deficits in schizophrenia. Neuropsychology, 12, 278288.10.1037/0894-4105.12.2.278CrossRefGoogle Scholar
Ters, F., Mayer, G., & Reichenbach, D. (1977). L'échelle Dubois-Buyse d'Orthographe Usuelle Française (The Dubois-Buyse French usage spelling). Paris, France: Edition O.C.D.L.Google Scholar
Van Harskamp, N.J., Rudge, P., & Cipolotti, L. (2002). Are multiplication facts implemented by the left supramarginal and angular gyri? Neuropsychologia, 40, 17861793.10.1016/S0028-3932(02)00036-2CrossRefGoogle Scholar
Vilkki, J. (1988). Problem solving deficits after focal cerebral lesions. Cortex, 24, 119127.10.1016/S0010-9452(88)80020-0CrossRefGoogle ScholarPubMed
Wechsler, D. (1987). Wechsler Memory Scale–Revised. New York: Psychological Corporation.Google Scholar
Whalen, J., MacCloskey, M., & Gordon, G. (1997). Localizing arithmetic processes in the brain: Evidence from a transient deficit during cortical stimulation. Journal of Cognitive Neuroscience, 9, 409417.10.1162/jocn.1997.9.3.409CrossRefGoogle ScholarPubMed