Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T02:13:59.588Z Has data issue: false hasContentIssue false

Mapping the neural systems that mediate the Paced Auditory Serial Addition Task (PASAT)

Published online by Cambridge University Press:  06 February 2004

ALAN H. LOCKWOOD
Affiliation:
Department of Neurology, State University of New York, University at Buffalo Center for PET, Department of Nuclear Medicine, State University of New York, University at Buffalo Center for PET, VA Western NY Healthcare System, Buffalo, NY
RICHARD T. LINN
Affiliation:
Department of Rehabilitation Medicine, State University of New York, University at Buffalo Department of Psychiatry, State University of New York, University at Buffalo
HERMAN SZYMANSKI
Affiliation:
Department of Psychiatry, State University of New York, University at Buffalo
MARY LOU COAD
Affiliation:
Center for PET, Department of Nuclear Medicine, State University of New York, University at Buffalo
DAVID S. WACK
Affiliation:
Center for PET, Department of Nuclear Medicine, State University of New York, University at Buffalo

Abstract

The paced auditory serial addition task (PASAT), in which subjects hear a number-string and add the two most-recently heard numbers, is a neuropsychological test sensitive to cerebral dysfunction. We mapped the brain regions activated by the PASAT using positron emission tomography (PET) and 15O-water to measure cerebral blood flow. We parsed the PASAT by mapping sites activated by immediate repetition of numbers and by repetition of the prior number after the presentation of the next number in the series. The PASAT activated dispersed non-contiguous foci in the superior temporal gyri, bifrontal and biparietal sites, the anterior cingulate and bilateral cerebellar sites. These sites are consistent with the elements of the task that include auditory perception and processing, speech production, working memory, and attention. Sites mediating addition were not identified. The extent of the sites activated during the performance of the PASAT accounts for the sensitivity of this test and justifies its use in a variety of seemingly disparate conditions. (JINS, 2004, 10, 26–34.)

Type
Research Article
Copyright
© 2004 The International Neuropsychological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, G., Buxton, R.B., Wong, E.C., & Courchesne, E. (1997). Attentional activation of the cerebellum independent of motor involvement. Science, 275, 19401943.Google Scholar
Beck, A.T. & Steer, R.A. (1987). Beck Depression Inventory: Manual. San Antonio, TX: The Psychological Corporation.
Beck, A.T. & Steer, R.A. (1993). Manual for the Beck Anxiety Inventory. San Antonio, TX: The Psychological Corporation.
Benedict, R.H.B., Lockwood, A.H., Shucard, J.L., Shucard, D.W., Wack, D., & Murphy, B. (1998). Functional neuroimaging of attention in the auditory modality. Neuroreport, 9, 121126.Google Scholar
Benedict, R.H.B., Shucard, D.W., Santa Maria, M.P., Shucard , J.L., Abara, J.P, Coad, M.L., Wack, D., Sawusch, J., & Lockwood, A.H. (2001). Covert auditory attention generates activation in rostral/dorsal anterior cingulate cortex. Journal of Cognitive Neuroscience, 14, 637645.Google Scholar
Bever, C.T., Jr., Grattan, L., Panitch, H.S., & Johnson, K.P. (1995). The Brief Repeatable Battery of Neuropsychological Tests for Multiple Sclerosis: A preliminary serial study. Multiple Sclerosis, 1, 165169.Google Scholar
Botvinick, M., Nystrom, L.E., Fissell, K., Carter, C.S., & Cohen, J.D. (1999). Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature, 402, 179181.Google Scholar
Carter, C.S., Macdonald, A.M., Botvinick, M., Ross, L.L., Stenger, V.A., Noll, D., & Cohen, J.D. (2000). Parsing executive processes: Strategic vs. evaluative functions of the anterior cingulate cortex. Proceedings of the National Academy of Sciences USA, 97, 19441948.Google Scholar
Christodoulou, C., DeLuca, J., Ricker, J.H., Madigan, N.K., Bly, B.M., Lange, G., Kalnin, A.J., Liu, W.C., Steffener, J., Diamond, B.J., & Ni, A.C. (2001). Functional magnetic resonance imaging of working memory impairment after traumatic brain injury. Journal of Neurology, Neurosurgery and Psychiatry, 71, 161168.Google Scholar
Cohen, J.A., Cutter, G.R., Fischer, J.S., Goodman, A.D., Heidenreich, F.R., Jak, A.J., Kniker, J.E., Kooijmans, M.F., Lull, J.M., Sandrock, A.W., Simon, J.H., Simonian, N.A., & Whitaker, J.N. (2001). Use of the multiple sclerosis functional composite as an outcome measure in a phase 3 clinical trial. Archives of Neurology, 58, 961967.Google Scholar
Cohen, J.A., Fischer, J.S., Bolibrush, D.M., Jak, A.J., Kniker, J.E., Mertz, L.A., Skaramagas, T.T., & Cutter, G.R. (2000). Intrarater and interrater reliability of the MS functional composite outcome measure. Neurology, 54, 802806.Google Scholar
Deary, I.J., Ebmeier, K.P., MacLeod, K.M., Dougall, N., Hepburn, D.A., Frier, B.M., & Goodwin, G.M. (1994). PASAT performance and the pattern of uptake of 99mTc-exametazime in brain estimated with single photon emission tomography. Biological Psychology, 38, 118.Google Scholar
Dehaene, S., Spelke, E., Pinel, P., Stanescu, R., & Tsivkin, S. (1999). Sources of mathematical thinking: Behavioral and brain-imaging evidence. Science, 284, 970974.Google Scholar
Delis, D.C., Kramer, J.H., Kaplan, E., & Ober, B.A. (1987). California Verbal Learning Test: Adult version. San Antonio, TX: The Psychological Corporation.
DeLuca, J., Johnson, S.K., & Natelson, B.H. (1993). Information processing efficiency in chronic fatigue syndrome and multiple sclerosis. Archives of Neurology, 50, 301304.Google Scholar
Diamond, B.J., DeLuca, J., Kim, H., & Kelley, S.M. (1997). The question of disproportionate impairments in visual and auditory information processing in multiple sclerosis. Journal of Clinical and Experimental Neuropsychology, 19, 3442.Google Scholar
Diehr, M.C., Heaton, R.K., Miller, W., & Grant, I. (1998). The Paced Auditory Serial Addition Task (PASAT): Norms for age, education, and ethnicity. Assessment, 5, 375387.Google Scholar
Dittmann-Balcar, A., Juptner, M., Jentzen, W., & Schall, U. (2001). Dorsolateral prefrontal cortex activation during automatic auditory duration-mismatch processing in humans: A positron emission tomography study. Neuroscience Letters, 308, 119122.Google Scholar
Fiez, J.A. (1996). Cerebellar contributions to cognition. Neuron, 16, 1315.Google Scholar
Fischer, J.S., Priore, R.L., Jacobs, L.D., Cookfair, D.L., Rudick, R.A., Herndon, R.M., Richert, J.R., Salazar, A.M., Goodkin, D.E., Granger, C.V., Simon, J.H., Grafman, J.H., Lezak, M.D., O'Reilly Hovey, K.M., Perkins, K.K., Barilla-Clark, D., Schacter, M., Shucard, D.W., Davidson, A.L., Wende, K.E., Bourdette, D.N., & Kooijmans-Coutinho, M.F. (2000). Neuropsychological effects of interferon beta-1a in relapsing multiple sclerosis. Multiple Sclerosis Collaborative Research Group. Annals of Neurology, 48, 885892.Google Scholar
Fisk, J.D. & Archibald, C.J. (2001). Limitations of the Paced Auditory Serial Addition Test as a measure of working memory in patients with multiple sclerosis. Journal of the International Neuropsychological Society, 7, 363372.CrossRefGoogle Scholar
Fletcher, P.C., Dolan, R.J., & Frith, C.D. (1995a). The functional anatomy of memory. Experientia, 51, 11971207.Google Scholar
Fletcher, P.C., Frith, C.D., Grasby, P.M., Shallice, T., Frackowiak, R.S., & Dolan, R.J. (1995b). Brain systems for encoding and retrieval of auditory-verbal memory. An in vivo study in humans. Brain, 118, 401416.Google Scholar
Friston, K.J. (1994). Statistical Parametric Mapping. In R.W. Thatcher, M. Hallett, T.A. Zeffiro, E.R. John, & M. Huerta (Eds.), Functional neuroimaging: Technical foundations (Vol. 8, pp. 7993). New York: Academic Press.
Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.P, Frith, C.D., & Frackowiak, R.S.J. (1995). Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping, 2, 189210.Google Scholar
Fulton, J.C., Grossman, R.I., Udupa, J., Mannon, L.J., Grossman, M., Wei, L., Polansky, M., & Kolson, D.L. (1999). MR lesion load and cognitive function in patients with relapsing-remitting multiple sclerosis. American Journal of Neuroradiology, 20, 19511955.Google Scholar
Ghaem, O., Mellet, E., Crivello, F., Tzourio, N., Mazoyer, B., Berthoz, A., & Denis, M. (1997). Mental navigation along memorized routes activates the hippocampus, precuneus, and insula. Neuroreport, 8, 739744.Google Scholar
Gold, A.E., Deary, I.J., MacLeod, K.M., Thomson, K.J., & Frier, B.M. (1995). Cognitive function during insulin-induced hypoglycemia in humans: Short-term cerebral adaptation does not occur. Psychopharmacology, 119, 325333.Google Scholar
Grasby, P.M., Frith, C.D., Friston, K.J., Simpson, J., Fletcher, P.C., Frackowiak, R.S., & Dolan, R.J. (1994). A graded task approach to the functional mapping of brain areas implicated in auditory-verbal memory. Brain, 117, 12711282.Google Scholar
Gronwall, D. & Wrightson, P. (1974). Delayed recovery of intellectual function after head injury. Lancet 2, 605609.Google Scholar
Gusnard, D.A. & Raichle, M.E. (2001). Searching for a baseline: Functional imaging and the resting human brain. Nature Reviews Neuroscience, 2, 685694.Google Scholar
Heaton, R.K. (1981). Wisconsin Card Sorting Test manual. Odessa, FL: Psychological Assessment Resources.
Johnson, S.K., DeLuca, J., Diamond, B.J., & Natelson, B.H. (1996). Selective impairment of auditory processing in chronic fatigue syndrome: A comparison with multiple sclerosis and healthy controls. Perceptual and Motor Skills, 83, 5162.Google Scholar
Kiehl, K.A., Laurens, K.R., Duty, T.L., Forster, B.B., & Liddle, P.F. (2001). Neural sources involved in auditory target detection and novelty processing: An event-related fMRI study. Psychophysiology, 38, 133142.Google Scholar
Krupp, L.B., LaRocca, N.G., Muir-Nash, J., & Steinberg, A.D. (1989). The fatigue severity scale. Archives of Neurology, 48, 11211130.Google Scholar
Lezak, M.D. (1983). Neuropsychological assessment. New York: Oxford University Press.
Lockwood, A.H., Salvi, R.J., Coad, M.L., Arnold, S.A., Wack, D.S., Murphy, B.W., & Burkard, R.F. (1999). The functional anatomy of the normal human auditory system: Responses to 0.5 and 4.0 kilohertz tones at varied intensities. Cerebral Cortex, 9, 6576.Google Scholar
Martin, S.E., Engleman, H.M., Deary, I.J., & Douglas, N.J. (1996). The effect of sleep fragmentation on daytime function. American Journal of Respiratory and Critical Care Medicine, 153, 13281332.Google Scholar
O'Leary, D.S., Andreason, N.C., Hurtig, R.R., Hichwa, R.D., Watkins, G.L., Ponto, L.L., Rogers, M., & Kirchner, P.T. (1996). A positron emission tomography study of binaurally and dichotically presented stimuli: Effects of level of language and directed attention. Brain and Language, 53, 2039.Google Scholar
Petersen, S.E. & Fiez, J.A. (1993). The processing of single words studied with positron emission tomography. Annual Review of Neuroscience, 16, 509530.Google Scholar
Petersen, S.E., Fox, P.T., Posner, M.I., Mintun, M., & Raichle, M.E. (1988). Positron emission tomographic studies of the cortical anatomy of single word processing. Nature, 331, 585589.Google Scholar
Posner, M.I.. (1995). Attention in cognitive neuroscience: An overview. In M.S. Gazzaniga (Ed.), The cognitive neurosciences (Vol. 39, pp. 615624). Cambridge MA: MIT Press.
Posner, M.I., Petersen, S.E., Fox, P.I., & Raichle, M.E. (1988). Localization of cognitive operation in the human brain. Science, 240, 16271631.Google Scholar
Raichle, M.E., Fiez, J.A., Videen, T.O., MacLeod, A.M., Pardo, J.V., Fox, P.T., & Petersen, S.E. (1994). Practice-related changes in human brain functional anatomy during nonmotor learning. Cerebral Cortex, 4, 826.Google Scholar
Rasmussen, K., Jeppesen, H.J., & Sabroe, S. (1993). Psychometric tests for assessment of brain function after solvent exposure. American Journal of Industrial Medicine, 24, 553565.Google Scholar
Salvi, R.J., Lockwood, A.H., Frisina, R.D., Coad, M.L., Wack, D.S., & Frisina, D.R. (2002). PET imaging of the normal human auditory system: Responses to speech in quiet and in background noise. Hearing Research, 170, 96106.Google Scholar
Schweitzer, J.B., Faber, T.L., Grafton, S.T., Tune, L.E., Hoffman, J.M., & Kilts, C.D. (2000). Alterations in the functional anatomy of working memory in adult attention deficit hyperactivity disorder. American Journal of Psychiatry, 157, 278280.Google Scholar
Smith, E.E., Jonides, J., Marshuetz, C., & Koeppe, R.A. (1998). Components of verbal working memory: Evidence from neuroimaging. Proceedings of the National Academy of Sciences USA, 95, 876882.Google Scholar
Stroop, J.R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643662.CrossRefGoogle Scholar
Talairach, J. & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. New York: Georg Thieme Verlag.
Uzzell, B.P. & Oler, J. (1986). Chronic low-level mercury exposure and neuropsychological functioning. Journal of Clinical and Experimental Neuropsychology, 8, 581593.Google Scholar
Wechsler, D. (1981). Wechsler Adult Intelligence Scale–Revised. New York: The Psychological Corporation.
Weersink, E.J., van Zomeren, E.H., Koeter, G.H., & Postma, D.S. (1997). Treatment of nocturnal airway obstruction improves daytime cognitive performance in asthmatics. American Journal of Respiratory and Critical Care Medicine, 156, 11441150.Google Scholar
White, A.J. (1984). Cognitive impairment of acute mountain sickness and acetazolamide. Aviation Space and Environmental Medicine, 55, 598603.Google Scholar