Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-02T23:16:33.912Z Has data issue: false hasContentIssue false

Frontal lobes and attention: Processes and networks, fractionation and integration

Published online by Cambridge University Press:  22 March 2006

DONALD T. STUSS
Affiliation:
Baycrest, Rotman Research Institute, Toronto, Ontario, Canada Departments of Medicine (Neurology, Rehabilitation Science) and Psychology, University of Toronto, Toronto, Ontario, Canada

Abstract

The frontal lobes (FL), are they a general adaptive global capacity processor, or a series of fractionated processes? Our lesion studies focusing on attention have demonstrated impairments in distinct processes due to pathology in different frontal regions, implying fractionation of the “supervisory system.” However, when task demands are manipulated, it becomes evident that the frontal lobes are not just a series of independent processes. Increased complexity of task demands elicits greater involvement of frontal regions along a fixed network related to a general activation process. For some task demands, one or more anatomically distinct frontal processes may be recruited. In other conditions, there is a bottom-up nonfrontal/frontal network, with impairment noted maximally for the lesser task demands in the nonfrontal automatic processing regions, and then as task demands change, increased involvement of different frontal (more “strategic”) regions, until it appears all frontal regions are involved. With other measures, the network is top-down, with impairment in the measure first noted in the frontal region and then, with changing task demands, involving a posterior region. Adaptability is not just a property of FL, it is the fluid recruitment of different processes anywhere in the brain as required by the current task. (JINS, 2006, 12, 261–271.)

Type
SYMPOSIUM
Copyright
© 2006 The International Neuropsychological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aron, A.R., Fletcher, P.C., Bullmore, E.T., Sahakian, B.J., & Robbins, T.W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neuroscience, 6, 115116.Google Scholar
Alexander, M.P., Stuss, D.T., & Fansabedian, N. (2003). California verbal learning test: Performance by patients with focal frontal and non-frontal lesions. Brain, 126, 14931503.Google Scholar
Alexander, M.P., Stuss, D.T., Shallice, T., Picton, T.W., & Gillingham, S. (2005). Impaired concentration due to frontal lobe damage from two distinct lesion sites. Neurology, 65, 572579.CrossRefGoogle Scholar
Anderson, S.W., Damasio, H., Jones, R.D., & Tranel, D. (1991). Wisconsin Card Sorting Test performance as a measure of frontal lobe damage. Journal of Clinical and Experimental Neuropsychology, 13, 909922.Google Scholar
Bechara, A., Damasio, H., Tranel, D., & Anderson, S.W. (1998). Dissociation of working memory from decision making within the human prefrontal cortex. Journal of Neuroscience, 18, 428437.Google Scholar
Bigler, E.D., Burr, R., Gales, S., Norman, M., Kurth, S., Blatter, D., & Abildskov, T. (1994). Day of injury CT scan as an index to pre-injury brain morphology. Brain Injury, 8, 231238.CrossRefGoogle Scholar
Burgess, P.W. & Shallice, T. (1996). Response suppression, initiation and strategy use following frontal lobe lesions. Neuropsychologia, 34, 263272.CrossRefGoogle Scholar
Burgess, P.W., Simons, J.S., Dumontheil, I., & Gilbert, S.J. (2005). The gateway hypothesis of rostral prefrontal cortex (area 10) function. In J. Duncan, L. Phillips, & P. McLeod (Eds.), Measuring the mind: Speed, control, and age (pp. 217248). Oxford, UK: Oxford University Press.
Burgess, P.W., Veitch, E., de Lacy Costello, A., & Shallice, T. (2000). The cognitive and neuroanatomical correlates of multitasking. Neuropsychologia, 38, 848863.CrossRefGoogle Scholar
Cohen, J.D., Dunbar, K., & McClelland, J.L. (1990). On the control of automatic processes: A parallel distributed processing account of the Stroop effect. Psychological Review, 97, 332361.CrossRefGoogle Scholar
Damasio, H. & Damasio, A.R. (1989). Lesion analysis in neuropsychology. New York: Oxford University Press.
Decary, A. & Richer, F. (1995). Response selection deficits in frontal excisions. Neuropsychologia, 33, 12431253.CrossRefGoogle Scholar
Della Malva, C.L., Stuss, D.T., D'Alton, J., & Willmer, J. (1993). Capture errors and sequencing after frontal brain lesions. Neuropsychologia, 31, 363372.CrossRefGoogle Scholar
Drewe, E.A. (1975). Go-no go learning after frontal lobe lesions in humans. Cortex, 11, 816.CrossRefGoogle Scholar
Duncan, J., Emslie, H., Williams, P., Johnson, R., & Freer, C. (1996). Intelligence and the frontal lobe: The organization of goal-directed behavior. Cognitive Psychology, 30, 257303.CrossRefGoogle Scholar
Duncan, J. & Miller, E.K. (2002). Cognitive focus through adaptive neural coding in the primate prefrontal cortex. In D.T. Stuss & R.T. Knight (Eds.), Principles of frontal lobe function (pp. 278291). New York: Oxford University Press.
Duncan, J. & Owen, A.M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences, 23, 475483.CrossRefGoogle Scholar
Elsass, P. & Hartelius, H. (1985). Reaction time and brain disease: Relations to location, etiology and progression of cerebral dysfunction. Acta Neurologica Scandinavica, 71, 1119.Google Scholar
Fellows, L.K. & Farah, M.J. (2005). Different underlying impairments in decision making following ventromedial and dorsolateral frontal lobe damage in humans. Cerebral Cortex, 15, 5863.Google Scholar
Freedman, D.J., Riesenhuber, M., Poggio, T., & Miller, E.K. (2001). Categorical representation of visual stimuli in the primate prefrontal cortex. Science, 291, 312316.Google Scholar
Godefroy, O., Cabaret, M., Petit-Chenal, V., Pruvo, J.P., & Rousseaux, M. (1999). Control functions of the frontal lobes. Modularity of the central-supervisory system?, Cortex, 35, 120.Google Scholar
Godefroy, O., Cabaret, M., & Rousseaux, M. (1994). Vigilance and effects of fatigability, practice and motivation on simple reaction time tests in patients with lesion of the frontal lobe. Neuropsychologia, 32, 983990.CrossRefGoogle Scholar
Godefroy, O., Duhamel, A., Leclerc, X., Saint Michel, T., Henon, H., & Leys, D. (1998). Brain-behaviour relationships. Some models and related statistical procedures for the study of brain-damaged patients. Brain, 121, 15451556.Google Scholar
Godefroy, O. & Rousseaux, M. (1996). Binary choice in patients with prefrontal or posterior brain damage. A relative judgement theory analysis. Neuropsychologia, 34, 10291038.Google Scholar
Grady, C.L., McIntosh, A.R., Beig, S., & Craik, F.I.M. (2001). An examination of the effects of stimulus type, encoding task, and functional connectivity on the role of right prefrontal cortex in recognition memory. Neuroimage, 14, 556571.Google Scholar
Hécaen, H. & Albert, M.L. (1978). Human neuropsychology. New York: Wiley.
Henson, R.N.A., Shallice, T., & Dolan, R.J. (1999). Right prefrontal cortex and episodic memory retrieval: A functional MRI test of the monitoring hypothesis. Brain, 122, 13671381.Google Scholar
Heilman, K.M. & Watson, R.T. (1977). The neglect syndrome—A unilateral defect of the orienting response. In S. Harnad, R.W. Doty, J. Jaynes, L. Goldstein, & G. Krauthamer (Eds.), Lateralization in the nervous system (pp. 285302). Academic Press.
Hofle, N., Paus, T., Reutens, D., Fiset, P., Gotman, J., Evans, A.C., & Jones, B.E. (1997). Regional cerebral blood flow changes as a function of delta and spindle activity during slow wave sleep in humans. Journal of Neuroscience, 17, 48004808.Google Scholar
Hornak, J., O'Dherty, J., Bramham, J., Rolls, E.T., Morris, R.G., Bullock, P.R., & Polkey, C.E. (2004). Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans. Journal of Cognitive Neuroscience, 16, 463478.Google Scholar
Knight, R.T. (1991). Evoked potential studies of attention capacity in human frontal lobe lesions. In H. Levin, H. Eisenberg, & F. Benton (Eds.), Frontal lobe function and dysfunction (pp. 139153). Oxford: Oxford University Press.
Leimkuhler, M.E. & Mesulam, M.-M. (1985). Reversible go-no go deficits in a case of frontal lobe tumor. Annals of Neurology, 18, 617619.CrossRefGoogle Scholar
Luria, A.R. (1973). The working brain: An introduction to neuropsychology. New York: Basic Books.
Luu, P., Collins, P., & Tucker, D.M. (2000a). Mood, personality, and self-monitoring: Negative affect and emotionality in relation to frontal lobe mechanisms of error monitoring. Journal of Experimental Psychology: General, 129, 4360.Google Scholar
Luu, P., Flaisch, T., & Tucker, D.M. (2000b). Medial frontal cortex in action monitoring. Journal of Neuroscience, 20, 464469.Google Scholar
McIntosh, A.R., Rajah, M.N., & Lobaugh, N.J. (2003). Functional connectivity of the medial temporal lobe relates to learning and awareness. Journal of Neuroscience, 23, 65206528.Google Scholar
Mesulam, M.-M. (1985). Principles of behavioral neurology. Philadelphia: Davis.
Milner, B. (1963). Effects of different brain lesions on card sorting: The role of the frontal lobes. Archives of Neurology, 9, 100110.Google Scholar
Milner, B. (1964). Some effects of frontal lobectomy in man. In J.M. Warren & K. Akert (Eds.), The frontal granular cortex and behaviour (pp. 313334). New York: McGraw-Hill.
Mirsky, A.F. & Duncan, C.C. (2001). A nosology of disorders of attention. Adult Attention Deficit Disorder. Annals of The New York Academy of Sciences, 931, 1732.Google Scholar
Niemi, P. & Näätänen, R. (1981). Foreperiod and simple reaction time. Psychological Bulletin, 89, 133162.Google Scholar
Norman, D.A. & Shallice, T. (1986). Attention to action: Willed and automatic control of behaviour. In R.J. Davidson, G.E. Shwartz, & D. Shapiro (Eds.), Consciousness and self-regulation: Advances in research and theory (Vol. 4, pp. 118). New York: Plenum.
Pardo, J.V., Fox, P.T., & Raichle, M.E. (1991). Localization of a human system for sustained attention by positron emission tomography. Nature, 349, 6164.Google Scholar
Paus, T. (2001). Primate anterior cingulate cortex: Where motor control, drive and cognition interface. Nature Reviews Neuroscience, 2, 417424.CrossRefGoogle Scholar
Paus, T., Zatorre, R.J., Hofle, N., Caramanos, Z., Petrides, M., & Evans, A.C. (1997). Time-related changes in neural systems underlying attention and arousal during the performance of an auditory vigilance task. Journal of Cognitive Neuroscience, 9, 392408.CrossRefGoogle Scholar
Petrides, M. & Pandya, D.M. (1994). Comparative architectonic analysis of the human and macaque frontal cortexy. In F. Boller & J. Grafman (Eds.), Handbook of neuropsychology (Vol. 9, pp. 1757). Amsterdam: Elsevier.
Posner, M.I. & Petersen, S.E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 2542.CrossRefGoogle Scholar
Rabbitt, P., Lowe, C., & Shilling, V. (2001). Frontal tests and models for cognitive ageing. European Journal of Cognitive Psychology, 13, 528.CrossRefGoogle Scholar
Richer, F. & Boulet, C. (1999). Frontal lesions and fluctuations in response preparation. Brain and Cognition, 40, 234238.Google Scholar
Shallice, T. (1991). From neuropsychology to mental structure. Behavioral and Brain Sciences, 14, 429437.CrossRefGoogle Scholar
Shallice, T. (2002). Fractionation of the supervisory system. In D.T. Stuss & R.T. Knight (Eds.), Principles of frontal lobe function (pp. 261277). New York: Oxford University Press.
Shammi, P. & Stuss, D.T. (1999). Humour appreciation: A role of the right frontal lobe. Brain, 122, 657666.CrossRefGoogle Scholar
Simons, J.S., Gilbert, S.J., Owen, A.M., Fletcher, P.C., & Burgess, P.W. (2005). Distinct roles for lateral and medial anterior prefrontal cortex in contextual recollection. Journal of Neurophysiology, 94, 813820.CrossRefGoogle Scholar
Spearman, C. (1927). The abilities of man. New York: Macmillan.
Sturm, W. & Willmes, K. (2001). On the functional neuroanatomy of intrinsic and phasic alertness. NeuroImage, 14, S76S84.CrossRefGoogle Scholar
Stuss, D.T., (in press). New approaches to prefrontal lobe testing. In B. Miller & J. Cummings (Eds.), The human frontal lobes (2nd ed.). New York: Guilford Publications, Inc.
Stuss, D.T., Alexander, M.P., Floden, D., Binns, M.A., Levine, B., McIntosh, A.R., Rajah, N., & Hevenor, S.J. (2002a). Fractionation and localization of distinct frontal lobe processes: Evidence from focal lesions in humans. In D.T. Stuss & R.T. Knight (Eds.), Principles of frontal lobe function (pp. 392407). New York: Oxford University Press.
Stuss, D.T., Alexander, M.P., Hamer, L., Palumbo, C., Dempster, R., Binns, M., Levine, B., & Izukawa, D. (1998). The effects of focal anterior and posterior brain lesions on verbal fluency. Journal of the International Neuropsychological Society, 4, 265278.Google Scholar
Stuss, D.T., Alexander, M.P., Palumbo, C.L., Buckle, L., Sayer, L., & Pogue, J. (1994). Organizational strategies of patients with unilateral or bilateral frontal lobe injury in word list learning tasks. Neuropsychology, 8, 355373.CrossRefGoogle Scholar
Stuss, D.T., Alexander, M.P., Shallice, T., Picton, T.W., Binns, M.A., MacDonald, R., Borowiec, A., & Katz, D. (2005). Multiple frontal systems controlling response speed. Neuropsychologia, 43, 396417.Google Scholar
Stuss, D.T. & Benson, D.F. (1984). Neuropsychological studies of the frontal lobes. Psychological Bulletin, 95, 328.CrossRefGoogle Scholar
Stuss, D.T. & Benson, D.F. (1986). The frontal lobes. New York: Raven Press.
Stuss, D.T., Binns, M.A., Murphy, K.J., & Alexander, M.P. (2002b). Dissociations within the anterior attentional system: Effects of task complexity and irrelevant information on reaction time speed and accuracy. Neuropsychology, 16, 500513.Google Scholar
Stuss, D.T., Bisschop, S.M., Alexander, M.P., Levine, B., Katz, D., & Izukawa, D. (2001a). The Trail Making Test: A study in focal lesion patients. Psychological Assessment, 13, 230239.Google Scholar
Stuss, D.T., Floden, D., Alexander, M.P., Levine, B., & Katz, D. (2001b). Stroop performance in focal lesion patients: Dissociation of processes and frontal lobe lesion location. Neuropsychologia, 39, 771786.Google Scholar
Stuss, D.T. & Levine, B. (2002). Adult clinical neuropsychology: Lessons from studies of the frontal lobes. Annual Review of Psychology, 53, 401433.CrossRefGoogle Scholar
Stuss, D.T., Levine, B., Alexander, M.P., Hong, J., Palumbo, C., Hamer, L., Murphy, K.J., & Izukawa, D. (2000). Wisconsin Card Sorting Test performance in patients with focal frontal and posterior brain damage: Effects of lesion location and test structure on separable cognitive processes. Neuropsychologia, 38, 388402.CrossRefGoogle Scholar
Stuss, D.T., Shallice, T., Alexander, M.P., & Picton, T.W. (1995). A multidisciplinary approach to anterior attentional functions. Annals of the New York Academy of Sciences, 769, 191211.Google Scholar
Stuss, D.T., Toth, J.P., Franchi, D., Alexander, M.P., Tipper, S., & Craik, F.I.M. (1999). Dissociation of attentional processes in patients with focal frontal and posterior lesions. Neuropsychologia, 37, 10051027.CrossRefGoogle Scholar
Tomita, H., Ohbayashi, M., Nakahara, K., Hasegawa, I., & Miyashita, Y. (1999). Top-down signal from prefrontal cortex in executive control of memory retrieval. Nature, 401, 699703.Google Scholar
Tranel, D., Bechara, A., & Denburg, N.L. (2002). Asymmetric functional roles of right and left ventromedial prefrontal cortices in social conduct, decision making and emotional processing. Cortex, 38, 589612.CrossRefGoogle Scholar
Wilkins, A.J., Shallice, T., & McCarthy, R. (1987). Frontal lesions and sustained attention. Neuropsychologia, 25, 359365.CrossRefGoogle Scholar