Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-02T17:20:18.809Z Has data issue: false hasContentIssue false

The Effectiveness of Item-Specific Encoding and Conservative Responding to Reduce False Memories in Patients with Mild Cognitive Impairment and Mild Alzheimer’s Disease Dementia

Published online by Cambridge University Press:  10 August 2020

Christopher Malone*
Affiliation:
Center for Translational Cognitive Neuroscience, VA Boston Healthcare System, Boston, MA, USA William James College, Newton, MA, USA
Katherine W. Turk
Affiliation:
Center for Translational Cognitive Neuroscience, VA Boston Healthcare System, Boston, MA, USA Boston University Alzheimer’s Disease Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
Rocco Palumbo
Affiliation:
Center for Translational Cognitive Neuroscience, VA Boston Healthcare System, Boston, MA, USA Boston University Alzheimer’s Disease Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
Andrew E. Budson
Affiliation:
Center for Translational Cognitive Neuroscience, VA Boston Healthcare System, Boston, MA, USA Boston University Alzheimer’s Disease Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
*
*Correspondence and reprint requests to: Christopher Malone, Christopher Malone M2 1, Mannheim68161, Germany. Tel: +49 621 1703-6316. E-mail: [email protected]

Abstract

Objective:

Patients with mild Alzheimer’s disease dementia are more susceptible to false memories than healthy older adults. Evidence that these patients can use cognitive strategies to reduce false memory is inconsistent.

Method:

In the present study, we examined the effectiveness of conservative responding and item-specific deep encoding strategies, alone and in combination, to reduce false memory in a categorized word list paradigm among participants with mild Alzheimer’s disease dementia (AD), amnestic single-domain mild cognitive impairment (MCI), and healthy age-matched older controls (OCs). A battery of clinical neuropsychological measures was also administered.

Results:

Although use of conservative responding alone tended to reduce performance in the MCI and OC groups, both deep encoding alone and deep encoding combined with conservative strategies led to improved discrimination for both gist memory and item-specific recollection for these two groups. In the AD group, only gist memory benefited from the use of strategies, boosted equally by deep encoding alone and deep encoding combined with conservative strategies; item-specific recollection was not improved. No correlation between the use of these strategies and performance on neuropsychological measures was found.

Conclusions:

These results suggest that further evaluation of these strategies is warranted as they have the potential to reduce related and unrelated memory errors and increase both gist memory and item-specific recollection in healthy older adults and individuals with amnestic MCI. Patients with AD were less able to benefit from such strategies, yet were still able to use them to reduce unrelated memory errors and increase gist memory.

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, N., Fujii, T., Nishio, Y., Iizuka, O., Kanno, S., Kikuchi, H., … Mori, E. (2011). False item recognition in patients with Alzheimer’s disease. Neuropsychologia, 49(7), 18971902. doi: 10.1016/j.neuropsychologia.2011.03.015 CrossRefGoogle ScholarPubMed
Albert, M.S., DeKosky, S.T., Dickson, D., Dubois, B., Feldman, H.H., Fox, N.C., … Phelps, C.H. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 270279. doi: 10.1016/j.jalz.2011.03.008 CrossRefGoogle Scholar
Battig, W.F., & Montague, W.E. (1969). Category norms of verbal items in 56 categories A replication and extension of the Connecticut category norms. Journal of Experimental Psychology, 80(3, Pt.2), 146. doi: 10.1037/h0027577 CrossRefGoogle Scholar
Becker, R.E., Becker, R.E., Giacobini, E., Barton, J.M., & Brown, M. (1997). Alzheimer Disease: From Molecular Biology to Theraphy. Retrieved from ––––https://link.springer.com/openurl?genre=book&isbn=978–0–8176–3879–5 CrossRefGoogle Scholar
Bouazzaoui, B., Isingrini, M., Fay, S., Angel, L., Vanneste, S., Clarys, D., & Taconnat, L. (2010). Aging and self-reported internal and external memory strategy uses: the role of executive functioning. Acta Psychologica, 135(1), 5966. doi: 10.1016/j.actpsy.2010.05.007 CrossRefGoogle ScholarPubMed
Braak, H., Alafuzoff, I., Arzberger, T., Kretzschmar, H., & Del Tredici, K. (2006). Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathologica, 112(4), 389404. doi: 10.1007/s00401–006–0127-z CrossRefGoogle ScholarPubMed
Brueckner, K., & Moritz, S. (2009). Emotional valence and semantic relatedness differentially influence false recognition in mild cognitive impairment, Alzheimer’s disease, and healthy elderly. Journal of the International Neuropsychological Society, 15(02), 268. doi: 10.1017/S135561770909047X CrossRefGoogle ScholarPubMed
Buckner, R.L. (2004). Memory and executive function in aging and AD. Neuron, 44(1), 195208. doi: 10.1016/j.neuron.2004.09.006 CrossRefGoogle ScholarPubMed
Budson, A.E., Daffner, K.R., Desikan, R., & Schacter, D.L. (2000). When false recognition is unopposed by true recognition: gist-based memory distortion in Alzheimer’s disease. Neuropsychology, 14(2), 277287. doi: 10.1037/0894–4105.14.2.277 CrossRefGoogle ScholarPubMed
Budson, A.E., Dodson, C.S., Daffner, K.R., & Schacter, D.L. (2005). Metacognition and false recognition in Alzheimer’s disease: further exploration of the distinctiveness heuristic. Neuropsychology, 19(2), 253258. doi: 10.1037/0894–4105.19.2.253 CrossRefGoogle ScholarPubMed
Budson, A.E., Sitarski, J., Daffner, K.R., & Schacter, D.L. (2002). False recognition of pictures versus words in Alzheimer’s disease: the distinctiveness heuristic. Neuropsychology, 16(2), 163173. doi: 10.1037/0894–4105.16.2.163 CrossRefGoogle ScholarPubMed
Budson, A.E., Sullivan, A.L., Mayer, E., Daffner, K.R., Black, P.M., & Schacter, D.L. (2002). Suppression of false recognition in Alzheimer’s disease and in patients with frontal lobe lesions. Brain, 125(12), 27502765. doi: 10.1093/brain/awf277 CrossRefGoogle ScholarPubMed
Budson, A.E., Wolk, D.A., Chong, H., & Waring, J.D. (2006). Episodic memory in Alzheimer’s disease: separating response bias from discrimination. Neuropsychologia, 44(12), 22222232. doi: 10.1016/j.neuropsychologia.2006.05.024 CrossRefGoogle ScholarPubMed
Budson, A.E., Todman, R.W., & Schacter, D.L. (2006). Gist memory in Alzheimer’s disease: evidence from categorized pictures. Neuropsychology, 20(1), 113122. doi: 10.1037/0894–4105.20.1.113 CrossRefGoogle ScholarPubMed
Deason, R.G., Hussey, E.P., Ally, B.A., & Budson, A.E. (2012). Changes in response bias with different study-test delays: evidence from young adults, older adults, and patients with Alzheimer’s disease. Neuropsychology, 26(1), 119126. doi: 10.1037/a0026330 CrossRefGoogle ScholarPubMed
Deason, R.G., Tat, M.J., Flannery, S., Mithal, P.S., Hussey, E.P., Crehan, E.T., … Budson, A.E. (2017). Response bias and response monitoring: evidence from healthy older adults and patients with mild Alzheimer’s disease. Brain and Cognition, 119, 1724. doi: 10.1016/j.bandc.2017.09.002 CrossRefGoogle ScholarPubMed
Delis, D.C., Kaplan, E., Kramer, J.H., & Corporation, P. (2001). Delis-Kaplan Executive Function System. San Antonio, TX: Psychological Corp.Google Scholar
Devitt, A.L., & Schacter, D.L. (2016). False memories with age: neural and cognitive underpinnings. Neuropsychologia, 91, 346359. doi: 10.1016/j.neuropsychologia.2016.08.030 CrossRefGoogle ScholarPubMed
Flanagan, E.C., Wong, S., Dutt, A., Tu, S., Bertoux, M., Irish, M., … Hornberger, M. (2016). False recognition in behavioral variant frontotemporal dementia and Alzheimer’s disease—disinhibition or amnesia? Frontiers in Aging Neuroscience, 8. doi: 10.3389/fnagi.2016.00177 CrossRefGoogle ScholarPubMed
Hildebrandt, H., Haldenwanger, A., & Eling, P. (2009). False recognition helps to distinguish patients with Alzheimer’s disease and amnestic MCI from patients with other kinds of dementia. Dementia and Geriatric Cognitive Disorders, 28(2), 159167. doi: 10.1159/000235643 CrossRefGoogle ScholarPubMed
Kirova, A.-M., Bays, R.B., & Lagalwar, S. (2015). Working memory and executive function decline across normal aging, mild cognitive impairment, and Alzheimer’s disease. BioMed Research International, 2015, 19. doi: 10.1155/2015/748212 CrossRefGoogle ScholarPubMed
LaVoie, D.J., Willoughby, L., & Faulkner, K. (2005). Frontal lobe dysfunction and false memory susceptibility in older adults. Experimental Aging Research, 32(1), 121. doi: 10.1080/01902140500325023 CrossRefGoogle Scholar
Logue, S.F., & Gould, T.J. (2014). The neural and genetic basis of executive function: attention, cognitive flexibility, and response inhibition. Pharmacology Biochemistry and Behavior, 123, 4554. doi: 10.1016/j.pbb.2013.08.007 CrossRefGoogle ScholarPubMed
Mack, W.J., Freed, D.M., Williams, B.W., & Henderson, V.W. (1992). Boston naming test: shortened versions for use in Alzheimer’s disease. Journal of Gerontology, 47(3), P154P158. doi: 10.1093/geronj/47.3.P154 CrossRefGoogle ScholarPubMed
Macmillan, N.A., & Creelman, C.D. (2005). Detection Theory: A User’s Guide (2nd ed). Mahwah, N.J: Lawrence Erlbaum Associates.Google Scholar
Malone, C., Deason, R.G., Palumbo, R., Heyworth, N., Tat, M., & Budson, A.E. (2019). False memories in patients with mild cognitive impairment and mild Alzheimer’s disease dementia: can cognitive strategies help? Journal of Clinical and Experimental Neuropsychology, 41(2), 204218. doi: 10.1080/13803395.2018.1513453 CrossRefGoogle ScholarPubMed
Marshall, G.A., Rentz, D.M., Frey, M.T., Locascio, J.J., Johnson, K.A., & Sperling, R.A. (2011). Executive function and instrumental activities of daily living in mild cognitive impairment and Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 300308. doi: 10.1016/j.jalz.2010.04.005 CrossRefGoogle ScholarPubMed
McCabe, D.P., Presmanes, A.G., Robertson, C.L., & Smith, A.D. (2004). Item-specific processing reduces false memories. Psychonomic Bulletin & Review, 11(6), 10741079. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15875978 CrossRefGoogle ScholarPubMed
McKhann, G.M., Knopman, D.S., Chertkow, H., Hyman, B.T., Jack, C.R., Kawas, C.H., … Phelps, C.H. (2011). The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 263269. doi: 10.1016/j.jalz.2011.03.005 CrossRefGoogle Scholar
Mitrushina, M.N. (2005). Handbook of Normative Data for Neuropsychological Assessment (2nd ed). New York: Oxford University Press.Google Scholar
Pangman, V.C., Sloan, J., & Guse, L. (2000). An examination of psychometric properties of the mini-mental state examination and the standardized mini-mental state examination: implications for clinical practice. Applied Nursing Research, 13(4), 209213. doi: 10.1053/apnr.2000.9231 CrossRefGoogle ScholarPubMed
Parkin, A.J., Bindschaedler, C., Harsent, L., & Metzler, C. (1996). Pathological false alarm rates following damage to the left frontal cortex. Brain and Cognition, 32(1), 1427. doi: 10.1006/brcg.1996.0055 CrossRefGoogle ScholarPubMed
Pierce, B.H., Waring, J.D., Schacter, D.L., & Budson, A.E. (2008). Effects of distinctive encoding on source-based false recognition: further examination of recall-to-reject processes in aging and Alzheimer disease. Cognitive and Behavioral Neurology, 21(3), 179186. doi: 10.1097/WNN.0b013e31817d74e7 CrossRefGoogle ScholarPubMed
Plancher, G., Guyard, A., Nicolas, S., & Piolino, P. (2009). Mechanisms underlying the production of false memories for famous people’s names in aging and Alzheimer’s disease. Neuropsychologia, 47(12), 25272536. doi: 10.1016/j.neuropsychologia.2009.04.026 CrossRefGoogle ScholarPubMed
Randolph, C., Tierney, M.C., Mohr, E., & Chase, T.N. (1998). The repeatable battery for the assessment of neuropsychological status (RBANS): preliminary clinical validity. Journal of Clinical and Experimental Neuropsychology, 20(3), 310319. doi: 10.1076/jcen.20.3.310.823 CrossRefGoogle ScholarPubMed
Reyna, V.F., & Brainerd, C.J. (1995). Fuzzy-trace theory: an interim synthesis. Learning and Individual Differences, 7(1), 175. doi: 10.1016/1041–6080(95)90031–4 CrossRefGoogle Scholar
Schacter, D.L., Curran, T., Galluccio, L., Milberg, W.P., & Bates, J.F. (1996). False recognition and the right frontal lobe: a case study. Neuropsychologia, 34(8), 793808. doi: 10.1016/0028–3932(95)00165–4 CrossRefGoogle ScholarPubMed
Schacter, D.L., Norman, K.A., & Koutstaal, W. (1998). The cognitive neuroscience of constructive memory. Annual Review of Psychology, 49(1), 289318. doi: 10.1146/annurev.psych.49.1.289 CrossRefGoogle ScholarPubMed
Silverberg, N.B., Ryan, L.M., Carrillo, M.C., Sperling, R., Petersen, R.C., Posner, H.B., … Ferman, T.J. (2011). Assessment of cognition in early dementia. Alzheimer’s & Dementia, 7(3), e60e76. doi: 10.1016/j.jalz.2011.05.001 CrossRefGoogle ScholarPubMed
Simmons-Stern, N.R., Deason, R.G., Brandler, B.J., Frustace, B.S., O’Connor, M.K., Ally, B.A., & Budson, A.E. (2012). Music-based memory enhancement in Alzheimer’s disease: promise and limitations. Neuropsychologia, 50(14), 32953303. doi: 10.1016/j.neuropsychologia.2012.09.019 CrossRefGoogle ScholarPubMed
Souchay, C., & Moulin, C. (2009). Memory and consciousness in Alzheimer’s disease. Current Alzheimer Research, 6(3), 186195. doi: 10.2174/156720509788486545 CrossRefGoogle ScholarPubMed
Strauss, E., Sherman, E.M.S., Spreen, O., & Spreen, O. (2006). A Compendium of Neuropsychological Tests: Administration, Norms, And Commentary (3rd ed.). Oxford; New York: Oxford University Press.Google Scholar
Tat, M.J., Soonsawat, A., Nagle, C.B., Deason, R.G., O’Connor, M.K., & Budson, A.E. (2016). The influence of strategic encoding on false memory in patients with mild cognitive impairment and Alzheimer’s disease dementia. Brain and Cognition, 109, 5058. doi: 10.1016/j.bandc.2016.08.003 CrossRefGoogle ScholarPubMed
Troyer, A.K., Graves, R.E., & Cullum, C.M. (1994). Executive functioning as a mediator of the relationship between age and episodic memory in healthy aging. Aging, Neuropsychology, and Cognition, 1(1), 4553. doi: 10.1080/09289919408251449 CrossRefGoogle Scholar
Turk, K.W., Palumbo, R., Deason, R.G., Marin, A., Elshaar, A., Gosselin, E., … Budson, A.E. (2020). False memories: the other side of forgetting. Journal of the International Neuropsychological Society, 112. doi: 10.1017/S1355617720000016 Google ScholarPubMed
Van Overschelde, J.P., Rawson, K.A., & Dunlosky, J. (2004). Category norms: an updated and expanded version of the Battig and Montague (1969) norms. Journal of Memory and Language, 50(3), 289335. doi: 10.1016/j.jml.2003.10.003 CrossRefGoogle Scholar
Waring, J.D., Chong, H., Wolk, D.A., & Budson, A.E. (2008). Preserved metamemorial ability in patients with mild Alzheimer’s disease: shifting response bias. Brain and Cognition, 66(1), 3239. doi: 10.1016/j.bandc.2007.05.002 CrossRefGoogle ScholarPubMed
Wechsler, D. (1997). WAIS-III Administration and Scoring Manual. San Antonio, TX: Psychological Corporation.Google Scholar
Weintraub, S., Wicklund, A.H., & Salmon, D.P. (2012). The neuropsychological profile of Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 2(4), a006171a006171. doi: 10.1101/cshperspect.a006171 CrossRefGoogle ScholarPubMed
Yiannopoulou, K.G., & Papageorgiou, S.G. (2013). Current and future treatments for Alzheimer’s disease. Therapeutic Advances in Neurological Disorders, 6(1), 1933. doi: 10.1177/1756285612461679 CrossRefGoogle ScholarPubMed
Supplementary material: File

Malone et al. supplementary material

Table S2

Download Malone et al. supplementary material(File)
File 48.5 KB
Supplementary material: File

Malone et al. supplementary material

Table S1

Download Malone et al. supplementary material(File)
File 49.1 KB