Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-19T00:09:37.626Z Has data issue: false hasContentIssue false

Differential Contributions of Executive and Episodic Memory Functions to Problem Solving in Younger and Older Adults

Published online by Cambridge University Press:  18 September 2013

Susan Vandermorris*
Affiliation:
Rotman Research Institute, Baycrest, Toronto, Canada Neuropsychology and Cognitive Health Program, Baycrest, Toronto, Canada Department of Psychology, University of Toronto, Canada
Signy Sheldon
Affiliation:
Rotman Research Institute, Baycrest, Toronto, Canada Department of Psychology, University of Toronto, Canada
Gordon Winocur
Affiliation:
Rotman Research Institute, Baycrest, Toronto, Canada Department of Psychology, University of Toronto, Canada Department of Psychiatry, University of Toronto, Canada Department of Psychology, Trent University, Peterborough, Canada
Morris Moscovitch
Affiliation:
Rotman Research Institute, Baycrest, Toronto, Canada Neuropsychology and Cognitive Health Program, Baycrest, Toronto, Canada Department of Psychology, University of Toronto, Canada
*
Correspondence and reprint requests to: Susan Vandermorris, Neuropsychology and Cognitive Health, Baycrest, 3560 Bathurst St., Toronto, Ontario, Canada, M6A 2E1. E-mail: [email protected]

Abstract

The relationship of higher order problem solving to basic neuropsychological processes likely depends on the type of problems to be solved. Well-defined problems (e.g., completing a series of errands) may rely primarily on executive functions. Conversely, ill-defined problems (e.g., navigating socially awkward situations) may, in addition, rely on medial temporal lobe (MTL) mediated episodic memory processes. Healthy young (N = 18; M = 19; SD = 1.3) and old (N = 18; M = 73; SD = 5.0) adults completed a battery of neuropsychological tests of executive and episodic memory function, and experimental tests of problem solving. Correlation analyses and age group comparisons demonstrated differential contributions of executive and autobiographical episodic memory function to well-defined and ill-defined problem solving and evidence for an episodic simulation mechanism underlying ill-defined problem solving efficacy. Findings are consistent with the emerging idea that MTL-mediated episodic simulation processes support the effective solution of ill-defined problems, over and above the contribution of frontally mediated executive functions. Implications for the development of intervention strategies that target preservation of functional independence in older adults are discussed. (JINS, 2013, 19, 1–10)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addis, D.R., Moscovitch, M., McAndrews, M.P. (2007). Consequences of hippocampal damage across the autobiographical memory network in left temporal lobe epilepsy. Brain, 130, 23272342. doi:10.1093/brain/awm166CrossRefGoogle ScholarPubMed
Addis, D.R., Schacter, D.L. (2008). Constructive episodic simulation: Temporal distance and detail of past and future events modulate hippocampal engagement. Hippocampus, 18(2), 227237. doi:10.1002/hipo.20405CrossRefGoogle ScholarPubMed
Addis, D.R., Wong, A.T., Schacter, D.L. (2008). Age-related changes in the episodic simulation of future events. Psychological Science, 19(1), 3341. doi:10.1111/j.1467-9280.2008.02043.xCrossRefGoogle ScholarPubMed
Allaire, J.C., Marsiske, M. (2002). Well- and ill-defined measures of everyday cognition: Relationship to older adults’ intellectual ability and functional status. Psychology and Aging, 17(1), 101115. doi:10.1037//0882-7974.17.1.101CrossRefGoogle ScholarPubMed
Barbey, A.K., Barsalou, L.W. (2009). Reasoning and problem solving: Models. In L. Squire (Ed.), Encyclopedia of neuroscience (pp. 3543). Oxford: Academic Press.CrossRefGoogle Scholar
Benedict, R.H.B., Schretlen, D., Groninger, L., Brandt, J. (1998). Hopkins Verbal Learning Test – Revised: Normative data and analysis of inter-form and test-retest reliability. The Clinical Neuropsychologist, 12(1), 4355. doi:10.1076/clin.12.1.43.1726CrossRefGoogle Scholar
Blair, J.R., Spreen, O. (1989). Predicting premorbid IQ: A revision of the National Adult Reading Test. The Clinical Neuropsychologist, 3, 129136. doi:10.1080/13854048908403285CrossRefGoogle Scholar
Blanchard-Fields, F., Mienaltowski, A., Seay, R.B. (2007). Age differences in everyday problem solving effectiveness: Older adults select more effective strategies for interpersonal problems. The Journals of Gerontology: Series B: Psychological Sciences and Social Sciences, 62(1), 6164. doi:10.1093/geronb/62.1.P61CrossRefGoogle ScholarPubMed
Buckner, R.L. (2010). The role of the hippocampus in prediction and imagination. Annual Review of Psychology, 61, 2748. doi:10.1146/annurev.psych.60.110707.163508CrossRefGoogle ScholarPubMed
Burgess, P.W., Shallice, T. (1997). The Hayling and Brixton Tests. Thurston, Suffolk: Thames Valley Test Company.Google Scholar
Cabeza, R., Prince, S.E., Daselaar, S.M., Greenberg, D.L., Budde, M., Dolcos, F., Rubin, D.C. (2004). Brain activity during episodic retrieval of autobiographical and laboratory events: An fMRI study using a novel photo paradigm. Journal of Cognitive Neuroscience, 16(9), 15831594.CrossRefGoogle ScholarPubMed
Channon, S. (2004). Frontal lobe dysfunction and everyday problem solving: Social and non-social contributions. Acta Psychologica, 115(2–3), 235254. doi:10.1016/j.actpsy.2003.12.008CrossRefGoogle ScholarPubMed
Channon, S., Crawford, S. (1999). Problem solving in real-life-type situations: The effects of anterior and posterior lesions on performance. Neuropsychologia, 37(7), 757770.CrossRefGoogle ScholarPubMed
Chi, M., Feltovich, P.J., Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121152. doi:10.1207/s15516709cog0502_2CrossRefGoogle Scholar
Colvin, M.K., Dunbar, K., Grafman, J. (2001). The effects of frontal lobe lesions on goal achievement in the water jug task. Cognitive Neuroscience, 13, 11291147. doi:10.1162/089892901753294419CrossRefGoogle ScholarPubMed
Dritschel, B.H., Kogan, L., Burton, A., Burton, E., Goddard, L. (1998). Everyday planning difficulties following traumatic brain injury: A role for autobiographical memory. Brain Injury, 12(10), 875886. doi:10.1080/026990598122098Google ScholarPubMed
Eichenbaum, H., Yonelinas, A.P., Ranganath, C. (2007). The medial temporal lobe and recognition memory. Annual Review of Neuroscience, 30, 123152. doi:10.1146/annurev.neuro.30.051606.094328CrossRefGoogle ScholarPubMed
Evans, J., Williams, J.M.G., O'Loughlin, S., Howells, K. (1992). Autobiographical memory and problem solving strategies of parasuicide patients. Psychological Medicine, 22, 399405. doi:10.1017/S0033291700030348CrossRefGoogle ScholarPubMed
Folstein, M.F., Folstein, S.E., McHugh, P.R. (1975). Mini-mental state: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189198. doi:10.1016/0022-3956(75)90026-6CrossRefGoogle Scholar
Gerlach, K.D., Spreng, R.N., Gilmore, A.W., Schacter, D.L. (2011). Solving future problems: Default network and executive activity associated with goal-directed mental simulations. Neuroimage, 55, 18161824. doi:10.1017/j.neuroimage.2011.01.030CrossRefGoogle ScholarPubMed
Gilbert, S.J., Zamenopoulos, T., Alexiou, K., Johnson, J.H. (2010). Involvement of right dorsolateral prefrontal cortex in ill-structured design cognition: An fMRI study. Brain Research, 1312, 7988. doi:10.1016/j.brainres.2009.11.045CrossRefGoogle ScholarPubMed
Gilboa, A. (2004). Autobiographical and episodic memory – one and the same? Evidence from prefrontal activation in neuroimaging studies. Neuropsychologia, 42(10), 13361349. doi:10.1016/j.neuropsychologia.2004.02.014CrossRefGoogle ScholarPubMed
Goddard, L., Dritschel, B., Burton, A. (1996). Role of autobiographical memory in social problem solving and depression. Journal of Abnormal Psychology, 105, 609616. doi:10.1037/0021-843X.105.4.609CrossRefGoogle ScholarPubMed
Goel, V., Grafman, J., Tajik, D., Gana, S., Danto, D. (1997). A study of the performance of patients with frontal lobe lesions in a financial planning task. Brain, 120, 18051822. doi:10.1093/brain/120.10.1805CrossRefGoogle Scholar
Goel, V., Vartanian, O. (2005). Disassociating the roles of right ventral lateral and dorsal lateral prefrontal cortex in generation and maintenance of hypotheses in set-shift problems. Cerebral Cortex, 15(8), 11701177. doi:10.1093/cercor/bhh217CrossRefGoogle Scholar
Hassabis, D., Maguire, E.A. (2009). The construction system of the brain. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1521), 12631271. doi:10.1098/rstb.2008.0296CrossRefGoogle ScholarPubMed
Krikorian, R., Bartok, J., Gay, N. (1994). Tower of London procedure: A standard method and developmental data. Journal of Clinical & Experimental Neuropsychology, 16(6), 840850. doi:10.1080/01688639408402697CrossRefGoogle Scholar
Levine, B., Svoboda, E., Hay, J.F., Winocur, G., Moscovitch, M. (2002). Aging and autobiographical memory: Dissociating episodic from semantic retrieval. Psychology & Aging, 17(4), 677689. doi:10.1037/0882-7974.17.4.677CrossRefGoogle ScholarPubMed
Lezak, M.D., Howieson, D.B., Loring, D.W. (2004). Neuropsychological assessment (4th ed.). New York: Oxford University Press.Google Scholar
Milner, B., Squire, L.R., Kandel, E.R. (1998). Cognitive neuroscience and the study of memory. Neuron, 20(3), 445468.CrossRefGoogle Scholar
Murphy, K.J., Troyer, A.K., Levine, B., Moscovitch, M. (2008). Episodic, but not semantic, autobiographical memory is reduced in amnestic mild cognitive impairment. Neuropsychologia, 46(13), 31163123.CrossRefGoogle Scholar
Osterrieth, P.A. (1944). Le test de copie d'une figure complexe: Contribution à l’étude de la perception et de la mémoire. Archives de Psychologie, 30, 286, 356.Google Scholar
Pa, J., Boxer, A., Chao, L.L., Gazzaley, A., Freeman, K., Kramer, J., Johnson, J.K. (2009). Clinical-neuroimaging characteristics of dysexecutive mild cognitive impairment. Annals of Neurology, 65(4), 414423.CrossRefGoogle ScholarPubMed
Park, D.C., Reuter-Lorenz, P. (2009). The adaptive brain: Aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173196. doi:10.1146/annurev.psych.59.103006.093656CrossRefGoogle ScholarPubMed
Platt, J.J., Spivack, G. (1975). Manual for the Means-End Problem solving Procedure (MEPS): A measure of interpersonal cognitive problem solving skills. Philadelphia: Hahnemann Community Mental Health/Mental Retardation Center.Google Scholar
Pretz, J.E., Naples, A.J., Sternberg, R.J., Davidson, J.E., Sternberg, R.J. (2003). Recognizing, defining, and representing problems. The psychology of problem solving (pp. 330). New York: Cambridge University Press.CrossRefGoogle Scholar
Race, E., Keane, M.M., Verfaellie, M. (2013). Losing sight of the future: Impaired semantic prospection following medial temporal lobe lesions. Hippocampus, 23, 268277. doi:10.1002/hipo.22084CrossRefGoogle ScholarPubMed
Raes, F., Hermans, D., Williams, J.M.G., Demyttenaere, K., Sabbe, B., Pieters, G., Eelen, P. (2005). Reduced specificity of autobiographical memory: A mediator between rumination and ineffective social problem-solving in major depression. Journal of Affective Disorders, 87, 331335.CrossRefGoogle ScholarPubMed
Reitan, R.M., Wolfson, D. (1985). The Halsted-Reitan Neuropsychological Test Battery. Tuscon, AZ: Neuropsychological Press.Google Scholar
Rey, A. (1941). L'examen psychologique dans les cas d'encéphalopathie traumatique. Archives de Psychologie, 28, 286340.Google Scholar
Schacter, D.L., Addis, D.R. (2007). Constructive memory: The ghosts of past and future. Nature, 445(7123), 27. doi:10.1038/445027aCrossRefGoogle ScholarPubMed
Schacter, D.L., Addis, D.R., Buckner, R.L. (2008). Episodic simulation of future events: Concepts, data, and applications. Annals of the New York Academy of Sciences, 1124, 3960. doi:10.1196/annals.1440.001CrossRefGoogle ScholarPubMed
Schall, U., Johnston, P., Lagopoulos, J., Jüptner, M., Jentzen, W., Thienel, R., Ward, P.B. (2003). Functional brain maps of Tower of London performance: A positron emission tomography and functional magnetic resonance imaging study. Neuroimage, 20(2), 11541161. doi:10.1016/S1053-8119(03)00338-0CrossRefGoogle Scholar
Sheldon, S., McAndrews, M.P., Moscovitch, M. (2011). Episodic memory processes mediated by the medial temporal lobes contribute to open-ended problem solving. Neuropsychologia, 49(9), 24392447. doi:10.1016/j.neuropsychologia.2011.04.021CrossRefGoogle ScholarPubMed
Sheldon, S., Moscovitch, M. (2012). The nature and time-course of medial temporal lobe contributions to semantic retrieval: An fMRI study on verbal fluency. Hippocampus, 22(6), 14511466. doi:10.1002/hipo.20985CrossRefGoogle Scholar
Sidley, G.L., Whitaker, K., Calam, R.M., Wells, A. (1997). The relationship between problem solving and autobiographical memory in parasuicide patients. Behavioural and Cognitive Psychotherapy, 25(2), 195202. doi:10.1017/S1352465800018397CrossRefGoogle Scholar
Spreen, O., Strauss, E. (1998). A compendium of neuropsychological tests (2nd ed.). New York: Oxford University Press.Google Scholar
Squire, L.R. (1992). Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychological Review, 99(2), 195231.CrossRefGoogle ScholarPubMed
Szpunar, K.K., Watson, J.M., McDermott, K.B. (2007). Neural substrates of envisioning the future. Proceedings of the National Academy of Sciences of the United States of America, 104(2), 642647. doi:10.1073/pnas.0610082104CrossRefGoogle ScholarPubMed
Unterrainer, J.M., Owen, A.M. (2006). Planning and problem solving: From neuropsychology to functional neuroimaging. Journal of Physiology, 99(4–6), 308317. doi:10.1016/j.jphysparis.2006.03.014Google ScholarPubMed
Wechsler, D. (1987). Wechsler Memory Scale – Revised. New York: Psychological Corporation.Google Scholar
Winocur, G., Moscovitch, M. (2011). Memory transformation and systems consolidation. Journal of the International Neuropsychological Society, 17(5), 766780. doi:10.1017/S1355617711000683CrossRefGoogle ScholarPubMed
Zeithamova, D., Schlichting, M.L., Preston, A.R. (2012). The hippocampus and inferential reasoning: Building memories to navigate future decisions. Frontiers in Human Neuroscience, 6, 70. doi:10.3389/fnhum.2012.00070CrossRefGoogle ScholarPubMed