Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T05:17:38.018Z Has data issue: false hasContentIssue false

Association between Lifetime Physical Activity and Cognitive Functioning in Middle-Aged and Older Community Dwelling Adults: Results from the Brain in Motion Study

Published online by Cambridge University Press:  19 November 2015

Stephanie J. Gill
Affiliation:
Department of Medical Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
Christine M. Friedenreich
Affiliation:
Department of Cancer Epidemiology and Prevention Research, Cancer Control Alberta, Alberta Health Services, Calgary, Alberta, Canada Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
Tolulope T. Sajobi
Affiliation:
Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
R. Stewart Longman
Affiliation:
Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Department of Psychology, University of Calgary, Calgary, Alberta, Canada Department of Rehabilitation Psychology, Alberta Health Services, Calgary, Alberta, Canada
Lauren L. Drogos
Affiliation:
Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
Margie H. Davenport
Affiliation:
Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
Amanda V. Tyndall
Affiliation:
Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
Gail A. Eskes
Affiliation:
Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Departments of Psychiatry, and Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
David B. Hogan
Affiliation:
Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
Michael D. Hill
Affiliation:
Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
Jillian S Parboosingh
Affiliation:
Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Alberta Children’s Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary, Alberta, Canada
Ben J. Wilson
Affiliation:
Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
Marc J. Poulin*
Affiliation:
Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
*
Correspondence and reprint requests to: Marc J. Poulin, Department of Physiology & Pharmacology, Brenda Strafford Foundation Chair in Alzheimer Research, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, HMRB-210, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada. E-mail: [email protected]

Abstract

To determine if total lifetime physical activity (PA) is associated with better cognitive functioning with aging and if cerebrovascular function mediates this association. A sample of 226 (52.2% female) community dwelling middle-aged and older adults (66.5±6.4 years) in the Brain in Motion Study, completed the Lifetime Total Physical Activity Questionnaire and underwent neuropsychological and cerebrovascular blood flow testing. Multiple robust linear regressions were used to model the associations between lifetime PA and global cognition after adjusting for age, sex, North American Adult Reading Test results (i.e., an estimate of premorbid intellectual ability), maximal aerobic capacity, body mass index and interactions between age, sex, and lifetime PA. Mediation analysis assessed the effect of cerebrovascular measures on the association between lifetime PA and global cognition. Post hoc analyses assessed past year PA and current fitness levels relation to global cognition and cerebrovascular measures. Better global cognitive performance was associated with higher lifetime PA (p=.045), recreational PA (p=.021), and vigorous intensity PA (p=.004), PA between the ages of 0 and 20 years (p=.036), and between the ages of 21 and 35 years (p<.0001). Cerebrovascular measures did not mediate the association between PA and global cognition scores (p>.5), but partially mediated the relation between current fitness and global cognition. This study revealed significant associations between higher levels of PA (i.e., total lifetime, recreational, vigorous PA, and past year) and better cognitive function in later life. Current fitness levels relation to cognitive function may be partially mediated through current cerebrovascular function. (JINS, 2015, 21, 816–830)

Type
Research Article
Copyright
Copyright © The International Neuropsychological Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaslid, R., Markwalder, T.M., & Nornes, H. (1982). Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. Journal of Neurosurgery, 57(6), 769774. doi:10.3171/jns.1982.57.6.0769 CrossRefGoogle ScholarPubMed
Abbott, R.D., White, L.R., Ross, G., Masaki, K.H., Curb, J., & Petrovitch, H. (2004). WAlking and dementia in physically capable elderly men. JAMA, 292(12), 14471453. doi:10.1001/jama.292.12.1447 CrossRefGoogle ScholarPubMed
Aengevaeren, V.L., Claassen, J.A., Levine, B.D., & Zhang, R. (2013). Cardiac baroreflex function and dynamic cerebral autoregulation in elderly Masters athletes. Journal of Applied Physiology (1985), 114(2), 195202. doi:10.1152/japplphysiol.00402.2012 CrossRefGoogle ScholarPubMed
Ainslie, P.N., Cotter, J.D., George, K.P., Lucas, S., Murrell, C., Shave, R., &Atkinson, G. (2008). Elevation in cerebral blood flow velocity with aerobic fitness throughout healthy human ageing. Journal of Physiology, 586(16), 40054010. doi:10.1113/jphysiol.2008.158279 Google Scholar
Ainsworth, B.E., Haskell, W.L., Herrmann, S.D., Meckes, N., Bassett, D.R. Jr., Tudor-Locke, C., &Leon, A.S. (2011). 2011 Compendium of physical activities: A second update of codes and MET values. Medicine and Science in Sports and Exercise, 43(8), 15751581. doi:10.1249/MSS.0b013e31821ece12 Google Scholar
Amieva, H., Jacqmin-Gadda, H., Orgogozo, J.-M., Le Carret, N., Helmer, C., Letenneur, L., & Dartigues, J.-F. (2005). The 9 year cognitive decline before dementia of the Alzheimer type: A prospective population-based study. Brain, 128(5), 10931101.Google Scholar
Andel, R., Crowe, M., Pedersen, N.L., Fratiglioni, L., Johansson, B., & Gatz, M. (2008). Physical exercise at midlife and risk of dementia three decades later: A population-based study of Swedish twins. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 63(1), 6266.Google Scholar
Bailey, D.M., Marley, C.J., Brugniaux, J.V., Hodson, D., New, K.J., Ogoh, S., &Ainslie, P.N. (2013). Elevated aerobic fitness sustained throughout the adult lifespan is associated with improved cerebral hemodynamics. Stroke, 44(11), 32353238. doi:10.1161/strokeaha.113.002589 Google Scholar
Barnes, J.N., Taylor, J.L., Kluck, B.N., Johnson, C.P., & Joyner, M.J. (2013). Cerebrovascular reactivity is associated with maximal aerobic capacity in healthy older adults. Journal of Applied Physiology (1985), 114(10), 13831387. doi:10.1152/japplphysiol.01258.2012 Google Scholar
Baron, R.M., & Kenny, D.A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173.CrossRefGoogle ScholarPubMed
Belsky, D.W., Caspi, A., Israel, S., Blumenthal, J.A., Poulton, R., & Moffitt, T.E. (2015). Cardiorespiratory fitness and cognitive function in midlife: Neuroprotection or neuroselection? Annals of Neurology, 77(4), 607617. doi:10.1002/ana.24356 Google Scholar
Blair, J.R., & Spreen, O. (1989). Predicting premorbid IQ: A revision of the National Adult Reading Test. The Clinical Neuropsychologist, 3(2), 129136.Google Scholar
Bleecker, M.L., Bolla-Wilson, K., Agnew, J., & Meyers, D.A. (1988). Age-related sex differences in verbal memory. Journal of Clinical Psychology, 44(3), 403411. doi:10.1002/1097-4679(198805)44:3<403::AID-JCLP2270440315>3.0.CO;2-0 3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Blondell, S.J., Hammersley-Mather, R., & Veerman, J.L. (2014). Does physical activity prevent cognitive decline and dementia?: A systematic review and meta-analysis of longitudinal studies. BMC Public Health, 14, 510. doi:10.1186/1471-2458-14-510 Google Scholar
Brown, A.D., McMorris, C.A., Longman, R.S., Leigh, R., Hill, M.D., Friedenreich, C.M., &Poulin, M.J. (2010). Effects of cardiorespiratory fitness and cerebral blood flow on cognitive outcomes in older women. Neurobiology of Aging, 31(12), 20472057. doi:http://dx.doi.org/10.1016/j.neurobiolaging.2008.11.002 Google Scholar
Brown, B.M., Peiffer, J.J., & Martins, R.N. (2013). Multiple effects of physical activity on molecular and cognitive signs of brain aging: Can exercise slow neurodegeneration and delay Alzheimer’s disease? Molecular Psychiatry, 18(8), 864874. doi:10.1038/mp.2012.162 Google Scholar
Buchman, A.S., Boyle, P.A., Yu, L., Shah, R.C., Wilson, R.S., & Bennett, D.A. (2012). Total daily physical activity and the risk of AD and cognitive decline in older adults. Neurology, 78(17), 13231329. doi:10.1212/WNL.0b013e3182535d35 Google Scholar
Burdette, J.H., Laurienti, P.J., Espeland, M.A., Morgan, A., Telesford, Q., Vechlekar, C.D., &Rejeski, W.J. (2010). Using network science to evaluate exercise-associated brain changes in older adults. Frontiers in Aging Neuroscience, 2, 23. doi:10.3389/fnagi.2010.00023 Google Scholar
Chang, M., Jonsson, P.V., Snaedal, J., Bjornsson, S., Saczynski, J.S., Aspelund, T., &Launer, L.J. (2010). The effect of midlife physical activity on cognitive function among older adults: AGES--Reykjavik Study. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 65(12), 13691374. doi:10.1093/gerona/glq152 Google Scholar
Chapman, S.B., Aslan, S., Spence, J.S., Defina, L.F., Keebler, M.W., Didehbani, N., & Lu, H. (2013). Shorter term aerobic exercise improves brain, cognition, and cardiovascular fitness in aging. Frontiers in Aging Neuroscience, 5, 75. doi:10.3389/fnagi.2013.00075 CrossRefGoogle ScholarPubMed
Coffey, C.E., Lucke, J.F., Saxton, J.A., Ratcliff, G., Unitas, L.J., Billig, B., & Bryan, R.N. (1998). Sex differences in brain aging: A quantitative magnetic resonance imaging study. Archives of Neurology, 55(2), 169179.Google Scholar
Colcombe, S., & Kramer, A.F. (2003). Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychological Science, 14(2), 125130.Google Scholar
Colcombe, S.J., Kramer, A.F., Erickson, K.I., Scalf, P., McAuley, E., Cohen, N.J., &Elavsky, S. (2004). Cardiovascular fitness, cortical plasticity, and aging. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 33163321. doi:10.1073/pnas.0400266101 Google Scholar
Cowell, P.E., Turetsky, B.I., Gur, R.C., Grossman, R.I., Shtasel, D.L., & Gur, R.E. (1994). Sex differences in aging of the human frontal and temporal lobes. Journal of Neuroscience, 14(8), 47484755.Google Scholar
Csizmadi, I., Kahle, L., Ullman, R., Dawe, U., Zimmerman, T.P., Friedenreich, C.M., &Subar, A.F. (2007). Adaptation and evaluation of the National Cancer Institute’s Diet History Questionnaire and nutrient database for Canadian populations. Public Health Nutrition, 10(1), 8896.CrossRefGoogle ScholarPubMed
Davenport, M.H., Hogan, D.B., Eskes, G.A., Longman, R.S., & Poulin, M.J. (2012). Cerebrovascular reserve: The link between fitness and cognitive function? Exercise and Sport Sciences Reviews, 40(3), 153158. doi:10.1097/JES.0b013e3182553430 CrossRefGoogle ScholarPubMed
de Bruijn, R.F., Schrijvers, E.M., de Groot, K.A., Witteman, J.C., Hofman, A., Franco, O.H., &Ikram, M.A. (2013). The association between physical activity and dementia in an elderly population: The Rotterdam Study. European Journal of Epidemiology, 28(3), 277283. doi:10.1007/s10654-013-9773-3 CrossRefGoogle Scholar
Deary, I.J., Whiteman, M.C., Starr, J.M., Whalley, L.J., & Fox, H.C. (2004). The impact of childhood intelligence on later life: Following up the Scottish mental surveys of 1932 and 1947. Journal of Personality and Social Psychology, 86(1), 130147. doi:10.1037/0022-3514.86.1.130 CrossRefGoogle ScholarPubMed
Demirkaya, S., Uluc, K., Bek, S., & Vural, O. (2008). Normal blood flow velocities of basal cerebral arteries decrease with advancing age: A transcranial Doppler sonography study. The Tohoku Journal of Experimental Medicine, 214(2), 145149.Google Scholar
Forbes, D., Thiessen, E.J., Blake, C.M., Forbes, S.C., & Forbes, S. (2013). Exercise programs for people with dementia. The Cochrane Database of Systematic Reviews, 12, Cd006489. doi:10.1002/14651858.CD006489.pub3 Google Scholar
Friedenreich, C.M., Courneya, K.S., & Bryant, H.E. (1998). The lifetime total physical activity questionnaire: Development and reliability. Medicine and Science in Sports and Exercise, 30(2), 266274.Google Scholar
Good, C.D., Johnsrude, I.S., Ashburner, J., Henson, R.N., Friston, K.J., & Frackowiak, R.S. (2001). A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage, 14(1 Pt 1), 2136. doi:10.1006/nimg.2001.0786 CrossRefGoogle ScholarPubMed
Guiney, H., Lucas, S.J., Cotter, J.D., & Machado, L. (2015). Evidence cerebral blood-flow regulation mediates exercise-cognition links in healthy young adults. Neuropsychology, 29(1), 19. doi:10.1037/neu0000124 Google Scholar
Gupta, A., Chazen, J.L., Hartman, M., Delgado, D., Anumula, N., Shao, H., &Sanelli, P.C. (2012). Cerebrovascular reserve and stroke risk in patients with carotid stenosis or occlusion: A systematic review and meta-analysis. Stroke, 43(11), 28842891. doi:10.1161/strokeaha.112.663716 Google Scholar
Ho, S.C., Woo, J., Sham, A., Chan, S.G., & Yu, A.L. (2001). A 3-year follow-up study of social, lifestyle and health predictors of cognitive impairment in a Chinese older cohort. International Journal of Epidemiology, 30(6), 13891396.Google Scholar
Iso-Markku, P., Waller, K., Kujala, U.M., & Kaprio, J. (2015). Physical activity and dementia: Long-term follow-up study of adult twins. Annals of Medicine, 17. doi:10.3109/07853890.2014.994675 Google ScholarPubMed
Jette, M., Sidney, K., & Blumchen, G. (1990). Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clinical Cardiology, 13(8), 555565.Google Scholar
Kareholt, I., Lennartsson, C., Gatz, M., & Parker, M.G. (2011). Baseline leisure time activity and cognition more than two decades later. International Journal of Geriatric Psychiatry, 26(1), 6574. doi:10.1002/gps.2490 CrossRefGoogle ScholarPubMed
Kimura, D. (2002). Sex hormones influence human cognitive pattern. Neuro Endocrinology Letters, 23(Suppl. 4), 6777.Google ScholarPubMed
Kimura, D., & Hampson, E. (1994). Cognitive pattern in men and women is influenced by fluctuations in sex hormones. Current Directions in Psychological Science, 5761.Google Scholar
Kramer, A.F., & Erickson, K.I. (2007). Capitalizing on cortical plasticity: Influence of physical activity on cognition and brain function. Trends in Cognitive Sciences, 11(8), 342348. doi:10.1016/j.tics.2007.06.009 Google Scholar
Kramer, A.F., Hahn, S., Cohen, N.J., Banich, M.T., McAuley, E., Harrison, C.R., &Colcombe, A. (1999). Ageing, fitness and neurocognitive function. Nature, 400(6743), 418419. doi:10.1038/22682 Google Scholar
Kramer, J.H., Delis, D.C., & Daniel, M. (1988). Sex differences in verbal learning. Journal of Clinical Psychology, 44(6), 907915. doi:10.1002/1097-4679(198811)44:6<907::AID-JCLP2270440610>3.0.CO;2-8 Google Scholar
Laurin, D., Verreault, R., Lindsay, J., MacPherson, K., & Rockwood, K. (2001). Physical activity and risk of cognitive impairment and dementia in elderly persons. Archives of Neurology, 58(3), 498504.Google Scholar
Lautenschlager, N.T., Cox, K., & Cyarto, E.V. (2012). The influence of exercise on brain aging and dementia. Biochimica et Biophysica Acta, 1822(3), 474481. doi:10.1016/j.bbadis.2011.07.010 Google Scholar
Matteis, M., Troisi, E., Monaldo, B.C., Caltagirone, C., & Silvestrini, M. (1998). Age and sex differences in cerebral hemodynamics: A transcranial Doppler study. Stroke, 29(5), 963967.Google Scholar
McKay, G.J., Silvestri, G., Chakravarthy, U., Dasari, S., Fritsche, L.G., Weber, B.H., &Patterson, C.C. (2011). Variations in apolipoprotein E frequency with age in a pooled analysis of a large group of older people. American Journal of Epidemiology, 173(12), 13571364. doi:10.1093/aje/kwr015 CrossRefGoogle Scholar
Middleton, L.E., Barnes, D.E., Lui, L.Y., & Yaffe, K. (2010). Physical activity over the life course and its association with cognitive performance and impairment in old age. J Am Geriatr Soc, 58(7), 13221326.doi:10.1111/j.1532-5415.2010.02903.xGoogle Scholar
Middleton, L.E., Mitnitski, A., Fallah, N., Kirkland, S.A., & Rockwood, K. (2008). Changes in cognition and mortality in relation to exercise in late life: A population based study. PLoS One, 3(9), e3124. doi:10.1371/journal.pone.0003124 Google Scholar
Murrell, C.J., Cotter, J.D., Thomas, K.N., Lucas, S.J., Williams, M.J., & Ainslie, P.N. (2013). Cerebral blood flow and cerebrovascular reactivity at rest and during sub-maximal exercise: Effect of age and 12-week exercise training. Age (Dordr), 35(3), 905920. doi:10.1007/s11357-012-9414-x Google Scholar
Nation, D.A., Wierenga, C.E., Clark, L.R., Dev, S.I., Stricker, N.H., Jak, A.J., &Bondi, M.W. (2013). Cortical and subcortical cerebrovascular resistance index in mild cognitive impairment and Alzheimer’s disease. Journal of Alzheimers Disease, 36(4), 689698. doi:10.3233/jad-130086 Google Scholar
Paterson, D.H., Cunningham, D.A., Koval, J.J., & St Croix, C.M. (1999). Aerobic fitness in a population of independently living men and women aged 55-86 years. Medicine and Science in Sports and Exercise, 31(12), 18131820.Google Scholar
Peelle, J.E., Cusack, R., & Henson, R.N. (2012). Adjusting for global effects in voxel-based morphometry: Gray matter decline in normal aging. Neuroimage, 60(2), 15031516. doi:10.1016/j.neuroimage.2011.12.086 Google Scholar
Portegies, M.L., de Bruijn, R.F., Hofman, A., Koudstaal, P.J., & Ikram, M.A. (2014). Cerebral vasomotor reactivity and risk of mortality: The Rotterdam Study. Stroke, 45(1), 4247. doi:10.1161/strokeaha.113.002348 Google Scholar
Poulin, M.J., Liang, P.J., & Robbins, P.A. (1996). Dynamics of the cerebral blood flow response to step changes in end-tidal PCO2 and PO2 in humans. Journal of Applied Physiology (1985), 81(3), 10841095.Google Scholar
Poulin, M.J., & Robbins, P.A. (1996). Indexes of flow and cross-sectional area of the middle cerebral artery using Doppler ultrasound during hypoxia and hypercapnia in humans. Stroke, 27(12), 22442250.Google Scholar
Prakash, R.S., Voss, M.W., Erickson, K.I., & Kramer, A.F. (2015). Physical activity and cognitive vitality. Annual Review of Psychology, 66, 769797. doi:10.1146/annurev-psych-010814-015249 Google Scholar
Prakash, R.S., Voss, M.W., Erickson, K.I., Lewis, J.M., Chaddock, L., Malkowski, E., &Kramer, A.F. (2011). Cardiorespiratory fitness and attentional control in the aging brain. Frontiers in Human Neuroscience, 4, 229. doi:10.3389/fnhum.2010.00229 Google Scholar
Qiu, C., & Fratiglioni, L. (2015). A major role for cardiovascular burden in age-related cognitive decline. Nature Reviews. Cardiology, 12(5), 267277. doi:10.1038/nrcardio.2014.223 Google Scholar
Rothman, K.J. (1990). No adjustments are needed for multiple comparisons. Epidemiology, 1(1), 4346.Google Scholar
Rovio, S., Kareholt, I., Helkala, E.L., Viitanen, M., Winblad, B., Tuomilehto, J., &Kivipelto, M. (2005). Leisure-time physical activity at midlife and the risk of dementia and Alzheimer’s disease. Lancet Neurology, 4(11), 705711. doi:10.1016/s1474-4422(05)70198-8 Google Scholar
Sabayan, B., van der Grond, J., Westendorp, R.G., Jukema, J.W., Ford, I., Buckley, B.M., &de Craen, A.J. (2013). Total cerebral blood flow and mortality in old age: A 12-year follow-up study. Neurology, 81(22), 19221929. doi:10.1212/01.wnl.0000436618.48402.da Google Scholar
Scarmeas, N., Luchsinger, J.A., Schupf, N., Brickman, A.M., Cosentino, S., Tang, M.X., & Stern, Y. (2009). Physical activity, diet, and risk of Alzheimer disease. JAMA, 302(6), 627637. doi:10.1001/jama.2009.1144 CrossRefGoogle ScholarPubMed
Shapiro, S.S., & Wilk, M.B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 591611.CrossRefGoogle Scholar
Sun, Q., Townsend, M.K., Okereke, O.I., Franco, O.H., Hu, F.B., & Grodstein, F. (2010). Physical activity at midlife in relation to successful survival in women at age 70 years or older. Archives of Internal Medicine, 170(2), 194201. doi:10.1001/archinternmed.2009.503 Google Scholar
Tarumi, T., Gonzales, M.M., Fallow, B., Nualnim, N., Pyron, M., Tanaka, H., & Haley, A.P. (2013). Central artery stiffness, neuropsychological function, and cerebral perfusion in sedentary and endurance-trained middle-aged adults. Journal of Hypertension, 31(12), 24002409. doi:10.1097/HJH.0b013e328364decc Google Scholar
Tolppanen, A.M., Solomon, A., Kulmala, J., Kareholt, I., Ngandu, T., Rusanen, M., &Kivipelto, M. (2015). Leisure-time physical activity from mid- to late life, body mass index, and risk of dementia. Alzheimers and Dementia, 11, 434443. doi:10.1016/j.jalz.2014.01.008 Google Scholar
Tyndall, A., Davenport, M., Wilson, B., Burek, G., Arsenault-Lapierre, G., Haley, E., &Poulin, M. (2013). The brain-in-motion study: Effect of a 6-month aerobic exercise intervention on cerebrovascular regulation and cognitive function in older adults. BMC Geriatrics, 13(1), 110. doi:10.1186/1471-2318-13-21 Google Scholar
Uttl, B. (2002). North American Adult Reading Test: Age norms, reliability, and validity. Journal of Clinical and Experimental Neuropsychology, 24(8), 11231137. doi:10.1076/jcen.24.8.1123.8375 Google Scholar
van Gelder, B.M., Tijhuis, M.A., Kalmijn, S., Giampaoli, S., Nissinen, A., & Kromhout, D. (2004). Physical activity in relation to cognitive decline in elderly men: The FINE Study. Neurology, 63(12), 23162321.Google Scholar
Verghese, J., Lipton, R.B., Katz, M.J., Hall, C.B., Derby, C.A., Kuslansky, G., &Buschke, H. (2003). Leisure activities and the risk of dementia in the elderly. New England Journal of Medicine, 348(25), 25082516. doi:10.1056/NEJMoa022252 CrossRefGoogle ScholarPubMed
Weiss, E.M., Kemmler, G., Deisenhammer, E.A., Fleischhacker, W.W., & Delazer, M. (2003). Sex differences in cognitive functions. Personality and Individual Differences, 35(4), 863875. doi:http://dx.doi.org/10.1016/S0191-8869(02)00288-X Google Scholar
Wendell, C.R., Gunstad, J., Waldstein, S.R., Wright, J.G., Ferrucci, L., & Zonderman, A.B. (2014). Cardiorespiratory fitness and accelerated cognitive decline with aging. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 69(4), 455462. doi:10.1093/gerona/glt144 Google Scholar
Weuve, J., Kang, J.H., Manson, J.E., Breteler, M.M., Ware, J.H., & Grodstein, F. (2004). Physical activity, including walking, and cognitive function in older women. JAMA, 292(12), 14541461. doi:10.1001/jama.292.12.1454 Google Scholar
Yaffe, K., Barnes, D., Nevitt, M., Lui, L., & Covinsky, K. (2001). A prospective study of physical activity and cognitive decline in elderly women: Women who walk. Archives of Internal Medicine, 161(14), 17031708. doi:10.1001/archinte.161.14.1703 Google Scholar
Zhu, Y.S., Tarumi, T., Tseng, B.Y., Palmer, D.M., Levine, B.D., & Zhang, R. (2013). Cerebral vasomotor reactivity during hypo- and hypercapnia in sedentary elderly and Masters athletes. Journal of Cerebral Blood Flow and Metabolism, 33(8), 11901196. doi:10.1038/jcbfm.2013.66 Google Scholar
Zimmerman, B., Sutton, B.P., Low, K.A., Fletcher, M.A., Tan, C.H., Schneider-Garces, N., &Fabiani, M. (2014). Cardiorespiratory fitness mediates the effects of aging on cerebral blood flow. Frontiers in Aging Neuroscience, 6, 59. doi:10.3389/fnagi.2014.00059 Google Scholar
Supplementary material: File

Gill Supplementary Material

Tables S1-S3

Download Gill Supplementary Material(File)
File 42.7 KB