Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T10:31:38.910Z Has data issue: false hasContentIssue false

79 Continuous Theta Burst Stimulation (cTBS) over the Inferior Parietal Cortex Decreases Default Mode Connectivity and Improves Overnight Sleep in People with Insomnia

Published online by Cambridge University Press:  21 December 2023

William D. S. Killgore*
Affiliation:
University of Arizona, Tucson, AZ, USA.
Samantha Jankowski
Affiliation:
University of Arizona, Tucson, AZ, USA.
Kymberly Henderson-Arredondo
Affiliation:
University of Arizona, Tucson, AZ, USA.
Christopher Trapani
Affiliation:
University of Arizona, Tucson, AZ, USA.
Heidi Elledge
Affiliation:
University of Arizona, Tucson, AZ, USA.
Daniel Lucas
Affiliation:
University of Arizona, Tucson, AZ, USA.
Andrew Le
Affiliation:
University of Arizona, Tucson, AZ, USA.
Emmett Suckow
Affiliation:
University of Arizona, Tucson, AZ, USA.
Lindsey Hildebrand
Affiliation:
University of Arizona, Tucson, AZ, USA.
Michelle Persich
Affiliation:
Western Kentucky University, Bowling Green, KY, USA.
Brianna Zahorecz
Affiliation:
University of Arizona, Tucson, AZ, USA.
Cohelly Salazar
Affiliation:
University of Arizona, Tucson, AZ, USA.
Tyler Watson
Affiliation:
University of Arizona, Tucson, AZ, USA.
Camryn Wellman
Affiliation:
University of Arizona, Tucson, AZ, USA.
Deva Reign
Affiliation:
University of Arizona, Tucson, AZ, USA.
Yu-Chin Chen
Affiliation:
University of Arizona, Tucson, AZ, USA.
Ying-Hui Chou
Affiliation:
University of Arizona, Tucson, AZ, USA.
Natalie S. Dailey
Affiliation:
Denver Health, Denver, CO, USA
*
Correspondence: William D. S. Killgore, University of Arizona, [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objective:

Chronic insomnia is a highly prevalent disorder affecting approximately one-in-three Americans. Insomnia is associated with increased cognitive and brain arousal. Compared to healthy individuals, those with insomnia tend to show greater activation/connectivity within the default mode network (DMN) of the brain, consistent with the hyperarousal theory. We investigated whether it would be possible to suppress activation of the DMN to improve sleep using a type of repetitive transcranial magnetic stimulation (rTMS) known as continuous theta burst stimulation (cTBS).

Participants and Methods:

Participants (n=9, 6 female; age=25.4, SD=5.9 years) meeting criteria for insomnia/sleep disorder on standardized scales completed a counterbalanced sham-controlled crossover design in which they served as their own controls on two separate nights of laboratory monitored sleep on separate weeks. Each session included two resting state functional magnetic resonance imaging (fMRI) sessions separated by a brief rTMS session. Stimulation involved a 40 second cTBS stimulation train applied over an easily accessible cortical surface node of the DMN located at the left inferior parietal lobe. After scanning/stimulation, the participant was escorted to an isolated sleep laboratory bedroom, fitted with polysomnography (PSG) electrodes, and allowed an 8-hour sleep opportunity from 2300 to 0700. PSG was monitored continuously and scored for standard outcomes, including total sleep time (TST), percentage of time various sleep stages, and number of arousals.

Results:

Consistent with our hypothesis, a single session of active cTBS produced a significant reduction of functional connectivity (p < .05, FDR corrected) within the DMN. In contrast, the sham condition produced no changes in functional connectivity from pre- to post-treatment. Furthermore, after controlling for age, we also found that the active treatment was associated with meaningful trends toward greater overnight improvements in sleep compared to the sham condition. First, the active cTBS condition was associated with significantly greater TST compared to sham (F(1,7)=14.19, p=.007, partial eta-squared=.67). Overall, individuals obtained 26.5 minutes more sleep on the nights that they received the active cTBS compared to the sham condition. Moreover, the active cTBS condition was associated with a significant increase in the percentage of time in rapid eye movement (REM%) sleep compared to the sham condition (F(1,7)=7.05, p=.033, partial eta-squared=.50), which was significant after controlling for age. Overall, active treatment was associated with an increase of 6.76% more of total sleep time in REM compared to sham treatment. Finally, active cTBS was associated with fewer arousals from sleep (t(8) = -1.84, p = .051, d = .61), with an average of 15.1 fewer arousals throughout the night than sham.

Conclusions:

Overall, these findings suggest that this simple and brief cTBS approach can alter DMN brain functioning in the expected direction and was associated with trends toward improved objectively measured sleep, including increased TST and REM% and fewer arousals during the night following stimulation. These findings emerged after only a single 40-second treatment, and it remains to be seen whether multiple treatments over several days or weeks can sustain or even improve upon these outcomes.

Type
Poster Session 01: Medical | Neurological Disorders | Neuropsychiatry | Psychopharmacology
Copyright
Copyright © INS. Published by Cambridge University Press, 2023