Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T07:04:17.917Z Has data issue: false hasContentIssue false

Swan conductors for p-adic differential modules. II Global variation

Published online by Cambridge University Press:  11 May 2010

Kiran S. Kedlaya
Affiliation:
Department of Mathematics, Room 2-165, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA ([email protected])

Abstract

Using a local construction from a previous paper, we exhibit a numerical invariant, the differential Swan conductor, for an isocrystal on a variety over a perfect field of positive characteristic overconvergent along a boundary divisor; this leads to an analogous construction for certain p-adic and l-adic representations of the étale fundamental group of a variety. We then demonstrate some variational properties of this definition for overconvergent isocrystals, paying special attention to the case of surfaces.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Abbes, A. and Saito, T., Ramification of local fields with imperfect residue fields, Am. J. Math. 124 (2002), 879920.CrossRefGoogle Scholar
2.Abbes, A. and Saito, T., Ramification of local fields with imperfect residue fields, II, Documenta Math. Extra Volume (2003), 572.Google Scholar
3.André, Y., Structure des connexions méromorphes formelles de plusieurs variables et semi-continuité de l'irregularité, Invent. Math. 170 (2007), 147198.CrossRefGoogle Scholar
4.Arabia, A., Relèvements des algèbres lisses et de leurs morphismes, Comment. Math. Helv. 76 (2001), 607639.CrossRefGoogle Scholar
5.Berthelot, P., Cohomologie rigide et cohomologie rigide à support propre, Première partie, prépublication IRMAR 96-03 (available at http://perso.univ-rennes1.fr/pierre.berthelot/).Google Scholar
6.Bosch, S., Güntzer, U. and Remmert, R., Non-Archimedean analysis, Grundlehren der mathematischen Wissenschaften, Volume 261 (Springer, 1984).Google Scholar
7.Crew, R., F-isocrystals and p-adic representations, in Algebraic Geometry, Brunswick, ME, 1985, Part 2, Proceedings of Symposia in Pure Mathematics, Volume 46, pp. 111138 (American Mathematical Society, Providence, RI, 1987).Google Scholar
8.de Jong, A. J., Smoothness, semi-stability and alterations, Publ. Math. IHES 83 (1996), 5193.CrossRefGoogle Scholar
9.Grosse-Klönne, E., Rigid analytic spaces with overconvergent structure sheaf, J. Reine Angew. Math. 519 (2000), 7395.Google Scholar
10.Grothendieck, A., Revêtements étales et groupe fondamental (SGA 1), Lecture Notes in Mathematics, Volume 224 (Springer, 1971).Google Scholar
11.Kato, K., Class field theory, -modules, and ramification on higher dimensional schemes, I, Am. J. Math. 116 (1994), 757784.CrossRefGoogle Scholar
12.Kedlaya, K. S., Local monodromy for p-adic differential equations: an overview, Int. J. Number Theory 1 (2005), 109154.CrossRefGoogle Scholar
13.Kedlaya, K. S., Fourier transforms and p-adic ‘Weil II’, Compositio Math. 142 (2006), 14261450.CrossRefGoogle Scholar
14.Kedlaya, K. S., Semistable reduction for overconvergent F-isocrystals, I, Unipotence and logarithmic extensions, Compositio Math. 143 (2007), 11641212.CrossRefGoogle Scholar
15.Kedlaya, K. S., Swan conductors for p-adic differential modules, I, A local construction, Alg. Number Theory 1 (2007), 269300.CrossRefGoogle Scholar
16.Kedlaya, K. S., Semistable reduction for overconvergent F-isocrystals, II, A valuation-theoretic approach, Compositio Math. 144 (2008), 657672.CrossRefGoogle Scholar
17.Kedlaya, K. S., Semistable reduction for overconvergent F-isocrystals, III, Local semistable reduction at monomial valuations, Compositio Math. 145 (2009), 143172.CrossRefGoogle Scholar
18.Kedlaya, K. S., Semistable reduction for overconvergent F-isocrystals, IV, Local semistable reduction at nonmonomial valuations, preprint (arXiv 0712.3400v3; 2009).CrossRefGoogle Scholar
19.Kedlaya, K. S., Good formal structures for flat meromorphic connections, I, Surfaces, preprint (arXiv 0811.0190v4; 2009).Google Scholar
20.Kedlaya, K. S., p-adic differential equations, Cambridge Studies of Advanced Mathematics, Volume 125 (Cambridge University Press, 2010, in press) (version from 30 September 2009 available online at http://math.mit.edu/~kedlaya/papers/).CrossRefGoogle Scholar
21.Kedlaya, K. S. and Tynan, P., Detecting integral polyhedral functions, Confluentes Math. 1 (2009), 87109.CrossRefGoogle Scholar
22.Kedlaya, K. S. and Xiao, L., Differential modules on p-adic polyannuli, J. Inst. Math. Jussieu 9 (2010), 155201 (erratum: J. Inst. Math. Jussieu 9 (2010), 669–671).CrossRefGoogle Scholar
23.Laumon, G., Semi-continuité du conducteur de Swan (d'après P. Deligne), in The Euler–Poincaré characteristic, Astérisque 83, pp. 173219 (Société Mathématique de France, Paris, 1981).Google Scholar
24.Lazard, M., Les zéros des fonctions analytiques d'une variable sur un corps valué complet, Publ. Math. IHES 14 (1962), 4775.CrossRefGoogle Scholar
25.Mebkhout, Z., Sur le théorème de semi-continuité des équations différentielles, Astérisque 130 (1985), 365417.Google Scholar
26.Meredith, D., Weak formal schemes, Nagoya Math. J. 45 (1971), 138.CrossRefGoogle Scholar
27.Sabbah, C., Équations différentielles à points singuliers irréguliers et phénomène de Stokes en dimension 2, Astérisque 263 (2000).Google Scholar
28.Serre, J.-P., Linear representations of finite groups, Graduate Texts in Mathematics, Volume 42 (Springer, 1977).Google Scholar
29.Thuillier, A., Théorie du potentiel sur les courbes en géométrie analytique non archimédienne, Applications à la theorie d'Arakelov, Thesis, Université de Rennes 1 (2005).Google Scholar
30.Tsuzuki, N., Finite local monodromy of overconvergent unit-root F-isocrystals on a curve, Am. J. Math. 120 (1998), 11651190.CrossRefGoogle Scholar
31.Tsuzuki, N., Morphisms of F-isocrystals and the finite monodromy theorem for unit-root F-isocrystals, Duke Math. J. 111 (2002), 385418.CrossRefGoogle Scholar
32.Xiao, L., On ramification filtrations and p-adic differential equations, I, Equal characteristic case, preprint (arXiv 0801.4962v2; 2008).Google Scholar
33.Xiao, L., On ramification filtrations and p-adic differential equations, II, Mixed characteristic case, preprint (arXiv 0811.3792v1; 2008).Google Scholar
34.Xiao, L., Nonarchimedean differential modules and ramification theory, PhD thesis, Massachusetts Institute of Technology (2009).Google Scholar